Skip to main content
Log in

Strong Instability of Standing Waves for the Nonlinear Schrödinger Equation in Trapped Dipolar Quantum Gases

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the strong instability of standing waves for the nonlinear Schrödinger equation arising in trapped dipolar quantum gases. Two cases are considered: the first when the system is free, the second when a partial/complete harmonic potential is added. In the free case, we present a new argument to prove that the ground state standing waves are strongly unstable by blow-up. In the second case, if \(\partial ^2_\mu S_\omega (Q^{\mu }_\omega )|_{\mu =1}\le 0\), we deduce that the ground state standing wave \(u(t,x)=e^{i\omega t}Q_\omega (x)\) is strongly unstable by blow-up, where \(S_\omega \) is the action, and \(Q_\omega ^{\mu }=\mu ^{3/2}Q_\omega (\mu x)\) is the \(L^2\)-invariant scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bao, W., Cai, Y., Wang, H.: Efficient numerical methods for computing ground states and dynamics of dipolar Bose–Einstein condensates. J. Comput. Phys. 229, 7874–7892 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Gligoric, G., Maluckov, A., Sterpic, M., Hadzievski, I., Malomed, B.A.: Two dimensional discrete solutions in dipolar Bose–Einstein condensates. Phys. Rev. A 81, 13633–13646 (2010)

    Google Scholar 

  4. Pedri, P., Santos, I.: Two-dimensional bright solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 95, 200404–200409 (2005)

    Google Scholar 

  5. Nath, R., Pedri, P., Santos, I.: Soliton-soliton scattering in dipolar Bose–Einstein condensates. Phys. Rev. A 76, 013606–013613 (2007)

    Google Scholar 

  6. Santos, L., Shlyapnikov, G., Zoller, P., Lewenstein, M.: Bose–Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1797 (2000)

    Google Scholar 

  7. Yi, S., You, L.: Trapped atomic condensates with anisotropic interactions. Phys. Rev. A 61, 041604 (2000)

    Google Scholar 

  8. Carles, R., Markowich, P.A., Sparber, C.: On the Gross–Pitaevskii equation for trapped dipolar quantum gases. Nonlinearity 21, 2569–2590 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Ellio, M.S., Valentini, J.J., Chandler, D.W.: Subkelvin cooling NO molecules via “billiard-like” collisions with argon. Science 302, 1940–1943 (2003)

    Google Scholar 

  10. Vengalattore, M., Leslie, S.R., Guzman, J., Stamper-Kurn, D.M.: Spontaneously modulated spin textures in a dipolar spinor Bose–Einstein condensate. Phys. Rev. Lett. 100, 170403 (2008)

    Google Scholar 

  11. Antonelli, P., Sparber, C.: Existence of solitary waves in dipolar quantum gases. Physica D 240, 426–431 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Bellazzini, J., Forcella, L.: Asymptotic dynamic for dipolar quantum gases below the ground state energy threshold. J. Funct. Anal. 277, 1958–1998 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Bellazzini, J., Jeanjean, L.: On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal. 48, 2028–2058 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Carles, R., Hajaiej, H.: Complementary study of the standing wave solutions of the Gross–Pitaevskii equation in dipolar quantum gases. Bull. Lond. Math. Soc. 47, 509–518 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Huang, J., Zhang, J.: Exact value of cross-constrain problem and strong instability of standing waves in trapped dipolar quantum gases. Appl. Math. Lett. 70, 32–38 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Ma, L., Cao, P.: The threshold for the focusing Gross–Pitaevskii equation with trapped dipolar quantum gases. J. Math. Anal. Appl. 381, 240–246 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Ma, L., Wang, J.: Sharp threshold of the Gross–Pitaevskii equation with trapped dipolar quantum gases. Can. Math. Bull. 56, 378–387 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Xie, Y., Li, L., Zhu, S.: Dynamical behaviors of blowup solutions in trapped quantum gases: concentration phenomenon. J. Math. Anal. Appl. 468, 169–181 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Yuan, Y., Feng, B.: Finite time blow-up for the nonlinear Schrödinger equation in trapped dipolar quantum gases with arbitrarily positive initial energy. Bound. Value Probl. 61, 9 (2020)

    Google Scholar 

  20. Berestycki, H., Cazenave, T.: Instabilité des états stationaires dans les éuations de Schrödinger et de Klein-Gordon non linéires. C. R. Acad. Sci. Paris Sér. I Math. 293, 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  21. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, New York (2003)

    MATH  Google Scholar 

  22. Le Coz, S.: A note on Berestycki–Cazenave’s classical instability result for nonlinear Schrödinger equations. Adv. Nonlinear Stud. 8, 455–463 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Bensouilah, A., Dinh, V.D., Zhu, S.H.: On stability and instability of standing waves for the nonlinear Schrödinger equation with inverse-square potential. J. Math. Phys. 59, 101505 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Dinh, V.D.: On instability of radial standing waves for the nonlinear Schrödinger equation with inverse-square potential. arXiv:1806.01068

  25. Dinh, V.D.: On instability of standing waves for the mass-supercritical fractional nonlinear Schrödinger equation. Z. Angew. Math. Phys. 70, 17 (2019)

    MATH  Google Scholar 

  26. Feng, B., Chen, R., Liu, J.: Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger–Choquard equation. Adv. Nonlinear Anal. 10, 311–330 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Feng, B., Chen, R., Wang, Q.: Instability of standing waves for the nonlinear Schrödinger–Poisson equation in the \(L^2\)-critical case. J. Dyn. Differ. Equ. 32, 1357–1370 (2020)

    MATH  Google Scholar 

  28. Feng, B., Liu, J., Niu, H., Zhang, B.: Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions. Nonlinear Anal. 196, 111791 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Ohta, M.: Stability of standing waves for the generalized Davey–Stewartson system. J. Dyn. Differ. Equ. 6, 325–334 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Ohta, M.: Stability and instability of standing waves for the generalized Davey–Stewartson system. Differ. Integral Equ. 8, 1775–1788 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Ohta, M.: Blow-up solutions and strong instability of standing waves for the generalized Davey–Stewartson system in \({\mathbb{R}}^2\). Ann. Inst. H. Poincaré Phys. Théor. 63, 111–117 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Ohta, M.: Instability of standing waves for the generalized Davey–Stewartson system. Ann. Inst. H. Poincaré Phys. Théor. 62, 69–80 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Saanouni, T.: Strong instability of standing waves for the fractional Choquard equation. J. Math. Phys. 59, 081509 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Wang, Y.: Strong instability of standing waves for Hartree equation with harmonic potential. Physica D 237, 998–1005 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, J.: Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential. Commun. Partial Differ. Equ. 30, 1429–1443 (2005)

    MATH  Google Scholar 

  36. Zhang, J., Zhu, S.: Stability of standing waves for the nonlinear fractional Schrödinger equation. J. Dyn. Differ. Equ. 29, 1017–1030 (2017)

    MATH  Google Scholar 

  37. Bellazzini, J., Boussaïd, N., Jeanjean, L., Visciglia, N.: Existence and stability of standing waves for supercritical NLS with a partial confinement. Commun. Math. Phys. 353, 229–251 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Cheng, Z., Shen, Z., Yang, M.: Instability of standing waves for a generalized Choquard equation with potential. J. Math. Phys. 58, 011504 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Feng, B.: Sharp threshold of global existence and instability of standing wave for the Schrödinger–Hartree equation with a harmonic potential. Nonlinear Anal. Real World Appl. 31, 132–145 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with potentials. Differ. Integral Equ. 16, 691–706 (2003)

    MATH  Google Scholar 

  41. Ohta, M.: Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential. Funkcial. Ekvac. 61, 135–143 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Ohta, M.: Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Commun. Pure Appl. Anal. 17, 1671–1680 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys. 18, 1794–1797 (1977)

    MathSciNet  MATH  Google Scholar 

  44. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11601435, 11801519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Wang, Q. Strong Instability of Standing Waves for the Nonlinear Schrödinger Equation in Trapped Dipolar Quantum Gases. J Dyn Diff Equat 33, 1989–2008 (2021). https://doi.org/10.1007/s10884-020-09881-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09881-0

Keywords

Navigation