Skip to main content

Advertisement

Log in

Periodic and Quasi-Periodic Solutions for Reversible Unbounded Perturbations of Linear Schrödinger Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider a new class of derivative nonlinear Schrödinger equations with reversible nonlinearities of the form

$$\begin{aligned} \mathrm {i}u_t+u_{xx}+|u_x|^{4}u=0,\quad (t, x)\in {\mathbb {R}}\times {\mathbb {T}}. \end{aligned}$$

We obtain real analytic, linearly stable periodic solutions and quasi-periodic ones with two basic frequencies via infinite dimensional Kolmogorov–Arnold–Moser (KAM) theory for reversible systems. By investigating the gauge invariance and the compact form of vector fields, in our KAM iterative procedure, we remove the usual Diophantine restrictions on tangential frequencies and only use the Melnikov non-resonance conditions. In the proof, we also use Birkhoff normal form techniques due to the lack of external parameters in the equation above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a bounded linear operator \(L: {\mathbb {C}}^{n_0}\rightarrow \ell ^{a,p}_{1},\)\(\Vert L\Vert _{p,{\mathbb {C}}^{n_0}}:=\sup \nolimits _{w\in {\mathbb {C}}^{n_0},|w|=1}\Vert Lw\Vert _{\ell ^{a,p}_1}.\) For a family of linear operators \(L(\theta ), \theta \in D(s),\)\(\Vert L\Vert _{p,{\mathbb {C}}^{n_0};D(s)}:=\sup \nolimits _{\theta \in D(s)}\Vert L(\theta )\Vert _{p,{\mathbb {C}}^{n_0}}.\)

References

  1. Baldi, P.: Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(1), 33 (2013)

    Google Scholar 

  2. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359(1–2), 471–536 (2014)

    Google Scholar 

  3. Baldi, P., Berti, M., Montalto, R.: KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(6), 1589–1638 (2016)

    Google Scholar 

  4. Berti, M., Biasco, L., Procesi, M.: KAM theory for the Hamiltonian derivative wave equation. Ann. Sci. Éc. Norm. Supér. (4) 46(2), 301–373 (2013)

    Google Scholar 

  5. Berti, M., Biasco, L., Procesi, M.: KAM for reversible derivative wave equations. Arch. Ration. Mech. Anal. 212(3), 905–955 (2014)

    Google Scholar 

  6. Berti, M., Montalto, R.: Quasi-periodic water waves. J. Fixed Point Theory Appl. 19(1), 129–156 (2017)

    Google Scholar 

  7. Daniel, M., Kavitha, L., Amuda, R.: Soliton spin excitations in an anisotropic heisenberg ferromagnet with octupole–dipole interaction. Phys. Rev. B 59(21), 13774 (1999)

    Google Scholar 

  8. Eliasson, L., Kuksin, S.: KAM for the nonlinear Schrödinger equation. Ann. Math. (2) 172(1), 371–435 (2010)

    Google Scholar 

  9. Feola, R.: KAM for quasi-linear forced hamiltonian NLS. arXiv preprint arXiv:1602.01341 (2016)

  10. Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations. J. Differ. Equ. 259(7), 3389–3447 (2015)

    Google Scholar 

  11. Feola, R., Procesi, M.: KAM for quasi-linear autonomous NLS. arXiv preprint arXiv:1705.07287 (2017)

  12. Geng, J., Wu, J.: Real analytic quasi-periodic solutions for the derivative nonlinear Schrödinger equations. J. Math. Phys. 53(10), 102702, 27 (2012)

    Google Scholar 

  13. Geng, J., Yi, Y.: Quasi-periodic solutions in a nonlinear Schrödinger equation. J. Differ. Equ. 233(2), 512–542 (2007)

    Google Scholar 

  14. Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307(2), 383–427 (2011)

    Google Scholar 

  15. Iooss, P., Plotnikov, G., Toland, J.F.: Standing waves on an in nitely deep perfect fluid under gravity. Arch. Ration. Mech. Anal. 177(3), 367–478 (2005)

    Google Scholar 

  16. Kappeler, T., Pöschel, J.: KdV and KAM, volume 45 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (2003)

  17. Klainerman, S., Majda, A.: Formation of singularities for wave equations including the nonlinear vibrating string. Commun. Pure Appl. Math. 33(3), 241–263 (1980)

    Google Scholar 

  18. Kuksin, S.: Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Volume 1556 of Lecture Notes in Mathematics. Springer, Berlin (1993)

    Google Scholar 

  19. Kuksin, S.: On small-denominators equations with large variable coefficients. Z. Angew. Math. Phys. 48(2), 262–271 (1997)

    Google Scholar 

  20. Kuksin, S.: A KAM-theorem for equations of the Korteweg–de Vries type. Rev. Math. Math. Phys. 10(3), ii+64 (1998)

    Google Scholar 

  21. Kuksin, S.: Analysis of Hamiltonian PDEs, Volume 19 of Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2000)

    Google Scholar 

  22. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. (2) 143(1), 149–179 (1996)

    Google Scholar 

  23. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133(9), 483–488 (1988)

    Google Scholar 

  24. Lax, P.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5, 611–613 (1964)

    Google Scholar 

  25. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Commun. Pure Appl. Math. 63(9), 1145–1172 (2010)

    Google Scholar 

  26. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys. 307(3), 629–673 (2011)

    Google Scholar 

  27. Liu, J., Yuan, X.: KAM for the derivative nonlinear Schrödinger equation with periodic boundary conditions. J. Differ. Equ. 256(4), 1627–1652 (2014)

    Google Scholar 

  28. Lou, Z., Si, J.: Quasi-periodic solutions for the reversible derivative nonlinear Schrödinger equations with periodic boundary conditions. J. Dyn. Differ. Equ. 29(3), 1031–1069 (2017)

    Google Scholar 

  29. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Google Scholar 

  30. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(1), 119–148 (1996)

    Google Scholar 

  31. Tao, T.: Nonlinear dispersive equations: local and global analysis. Math Uni (6): xii+256 (2006)

  32. Wayne, C.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    Google Scholar 

  33. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24(4), 1189–1228 (2011)

    Google Scholar 

Download references

Acknowledgements

The first author was supported by Research Foundation of Nanjing University of Aeronautics and Astronautics “YAH18085” (No. 56YAH18085). Both authors were supported by the National Natural Science Foundation of China (Grant No. 11571201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaowei Lou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Reversible Vector Field

We first give the properties of flow of vector field. Denote by \(\phi _Y ^t\) the flow of analytic vector field \( Y : {\mathscr {P}}^{a,p}_{{\mathbb {C}}}\supset D(s,r)\rightarrow {\mathscr {P}}^{a,p}_{{\mathbb {C}}}.\) Suppose there is a subdomain \(D(s^ \prime , r^ \prime ) \subset D(s, r)\) such that for each \( t \in [-1,1],\)\(\phi _Y ^t: D(s^ \prime , r^ \prime ) \rightarrow D(s, r)\) is well-defined. Define the transformed vector field of \(X: D(s,r)\rightarrow {\mathscr {P}}^{a,q}_{{\mathbb {C}}}\) as follows

$$\begin{aligned} (\phi _Y^t)^*X=(D\phi _Y^t)^{-1}\cdot X\circ \phi _Y^t: D(s^ \prime , r^ \prime )\rightarrow {\mathscr {P}}^{a,q}_{{\mathbb {C}}}. \end{aligned}$$

Since \(\frac{d}{dt}(\phi _Y^t)^*X=(\phi _Y^t)^*[X, Y], \) we obtain the following Taylor’s formula of \((\phi _Y ^1)^*X=(\phi _Y^t)^*X|_{t=1}\) with respect to t at 0 :

$$\begin{aligned} (\phi _Y ^1)^*X= & {} \sum \limits ^n_{l=0}\frac{1}{l !}ad^l_YX +\frac{1}{n !}\int \limits _0^1(1-t)^n(\phi _Y^t)^* ad^{n+1}_YX dt,\nonumber \\= & {} \sum \limits ^{\infty }_{l=0} \frac{1}{l!}ad^l_Y X , \end{aligned}$$
(6.1)

here \(ad_YX:=[X, Y]\), and \( ad^k_Y:=ad_Y ad^{k-1}_Y\), \(ad^0_Y:=\text {Id}.\)

Definition 6.1

(Reversible vector field) Suppose map S is an involution: \(S^2=id.\) Vector field X is called reversible with respect to S (or S-reversible), if

$$\begin{aligned} DS\cdot X=- X\circ S, \end{aligned}$$

i.e.,

$$\begin{aligned} (DS(w))X(w)=-X(S(w)),\quad w\in D(s,r), \end{aligned}$$

where DS is the differential of S.

Lemma 6.1

[28] Suppose vector field X is S-reversible and vector field Y satisfies \(Y\circ S = DS\cdot Y \). Then we have

  1. (1)

    \(\phi _Y ^t \circ S=S \circ \phi _Y ^t.\)

  2. (2)

    \((\phi _Y ^t)^*X\) and [XY] are S-reversible.

1.2 Technical Lemmas

We give several technical lemmas.

Lemma 6.2

[22] The convolution \(w*z\) of two complex sequences wz in \(\ell ^{a,p}_{{\mathcal {I}}}\) is defined as \((w*z)_j=\sum \nolimits _{m} w_{j-m}z_m.\) If \(a\ge 0,\)\(p> 1/2,\) then \(\ell ^{a,p}_{{\mathcal {I}}}\) is a Hilbert algebra with respect to the convolution of sequences, and \(\Vert w*z\Vert _{p}\le c\Vert w\Vert _{p}\Vert z\Vert _{p},\) the constant c depends only on p.

Lemma 6.3

Let \( u_j, j=1, \ldots ,m,\) be m complex functions on \({\mathbb {T}}^n\) that are real analytic on \(D(s) = \{\theta :|\text {Im} \theta | < s\}.\) Then

$$\begin{aligned} \sum \limits ^m_{j=1}\sup _{\theta \in D(s-\sigma )}|u_j(\theta )|\le \frac{4^n}{\sigma ^n}\sup _{\theta \in D(s)}\sum \limits ^m_{j=1}|u_j(\theta )| \end{aligned}$$

for \(0<\sigma <s\le 1.\)

Proof

Though the proof is essentially similar to that of Lemma M.2 in [16], we still give it here for convenience of the reader.

We first consider the case \(n=1.\) For each \(1\le j\le m\) there exists a point \(\theta _j\) in the rectangle \(Q=\{\theta :|\text {Re } \theta |\le \pi , |\text {Im} \theta |\le s-\sigma \}\) such that

$$\begin{aligned} \sup \limits _{\theta \in D(s-\sigma )}|u_j(\theta )|\le |u_j(\theta _j)|. \end{aligned}$$

By the Cauchy integral formula \(u_j(\theta _j)=\frac{1}{2\pi \mathrm {i}}\int _\Gamma \frac{u_j(\zeta )}{\zeta -\theta _j}d\zeta \), here \(\Gamma \) represents a rectangle with distance \(0<\rho <\sigma \) around Q, independent of j. We then have

$$\begin{aligned} \begin{aligned} \sum \limits ^m_{j=1}\sup _{\theta \in D(s-\sigma )}|u_j(\theta )| \le&\frac{1}{2\pi }\int _\Gamma \sum \limits ^m_{j=1}|\frac{u_j(\zeta )}{\zeta -\theta _j}||d\zeta |\\ \le&\frac{4}{\rho }\sup _{\theta \in D(s)}\sum \limits ^m_{j=1}|u_j(\theta )|. \end{aligned} \end{aligned}$$

Let \(\rho \rightarrow \sigma \) and we obtain the estimate for \(n=1.\) The case \(n>1\) follows similarly by the n-fold Cauchy integral. \(\square \)

With Lemma 6.3, we get the following lemma.

Lemma 6.4

Let \( A=(A_{ij})_{ i\ge 1, 1\le j\le n}: {\mathbb {C}}^n\rightarrow l^2\) be a bounded operator which depends on \(\theta \in {\mathbb {T}}^n\) such that all coefficients are analytic on D(s). Suppose \( B=(B_{ij})_{ i\ge 1, 1\le j\le n}: {\mathbb {C}}^n\rightarrow l^2\) is another operator depending on \(\theta \) whose coefficients satisfy

$$\begin{aligned} \sup _{\theta \in D(s)}|B_{ij}(\theta )|\le \frac{1}{i^p}\sup _{\theta \in D(s)}|A_{ij}(\theta )|,\quad p\ge 1. \end{aligned}$$

Then B is a bounded operator for each \(\theta \in D(s),\) and

$$\begin{aligned} \sup _{\theta \in D(s-\sigma )}\Vert B(\theta )\Vert \le \frac{4^{n+1}}{\sigma ^n}\sup _{\theta \in D(s)}\Vert A(\theta )\Vert \end{aligned}$$

for \(0<\sigma <s\le 1,\) where the operator norm \(\Vert A\Vert =\sup \nolimits _{|v|=1} \Vert Av\Vert _{l^2}\), \(|v|=\max \limits _{1\le j\le n}|v_j|.\)

Proof

For \(\theta \in D(s-\sigma )\) we have by Lemma 6.3

$$\begin{aligned} \begin{aligned} \sum \limits ^n_{j=1}|B_{ij}(\theta )|\le&\sum \limits ^n_{j=1} \frac{1}{i^p}\sup _{\theta \in D(s-\sigma )}|A_{ij}(\theta )|\\ \le&\frac{4^n}{i^p\sigma ^n}\sup _{\theta \in D(s)}\Vert A(\theta )\Vert . \end{aligned} \end{aligned}$$

Hence for \(v\in {\mathbb {C}}^n,\)\( \Vert B(\theta )v\Vert ^2_{l^2}\le (\frac{4^{n+1}}{\sigma ^n}\sup _{\theta \in D(s)}\Vert A(\theta )\Vert )^2|v|^2.\) Thus we get the final estimate. \(\square \)

Lemma 6.5

[16] Let \( A=(A_{ij})_{ i,j\in {\mathbb {Z}}_0}\) be a bounded operator on \(\ell ^2\) which depends on \(\theta \in {\mathbb {T}}^n\) such that all coefficients are analytic on D(s). Suppose \( B=(B_{ij})_{ i,j\in {\mathbb {Z}}_0}\) is another operator on \(\ell ^2\) depending on \(\theta \) whose coefficients satisfy

$$\begin{aligned} \sup _{\theta \in D(s)}|B_{ij}(\theta )|\le \frac{1}{||i|-|j||}\sup _{\theta \in D(s)}|A_{ij}(\theta )|,\quad i\ne \pm j, \end{aligned}$$

and \(B_{\pm jj}=0, j\in {\mathbb {Z}}_0.\) Then B is a bounded operator on \(\ell ^2\) for each \(\theta \in D(s),\) and

$$\begin{aligned} \sup _{\theta \in D(s-\sigma )}\Vert B(\theta )\Vert \le \frac{4^{n+1}}{\sigma ^n}\sup _{\theta \in D(s)}\Vert A(\theta )\Vert \end{aligned}$$

for \(0<\sigma <s\le 1.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Z., Si, J. Periodic and Quasi-Periodic Solutions for Reversible Unbounded Perturbations of Linear Schrödinger Equations. J Dyn Diff Equat 32, 117–161 (2020). https://doi.org/10.1007/s10884-018-9722-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9722-7

Keywords

Mathematics Subject Classification

Navigation