Skip to main content
Log in

Properties of Stationary Statistical Solutions of the Three-Dimensional Navier–Stokes Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The stationary version of a modified definition of statistical solution for the three-dimensional incompressible Navier–Stokes equations introduced in a previous work is investigated. Particular types of such stationary statistical solutions and their analytical properties are addressed. Results on the support and carriers of these stationary statistical solutions are also given, showing in particular that they are supported on the weak global attractor and are carried by a more regular part of the weak global attractor containing Leray–Hopf weak solutions which are locally strong solutions. Two recurrence-type results related to these measures are also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. When the space average \({\bar{\mathbf {u}}}\) of \(\mathbf {u}\) does not vanish, \({\bar{\mathbf {u}}}\) is nevertheless constant in time, and the difference \(\mathbf {u}' = \mathbf {u}- {\bar{\mathbf {u}}}\) satisfies (2.1) except for the addition of lower order terms involving \({\bar{\mathbf {u}}}\). In this case, all that follows applies without any significant change. Hence, in the end, our results hold without significant change even when \({\bar{\mathbf {u}}}\ne 0\).

  2. We recall here that a regular topological space is one in which any pair of a singleton and a closed set not containing this singleton can be separated by disjoint neighborhoods, while a completely regular topological space is a regular space in which any pair of a singleton and a closed set not containing this singleton can be separated by a function, i.e. there exists a continuous real-valued function defined on the space and which vanishes at the singleton and is equal to one everywhere on the closed set. The fact that \(H_{\mathrm{w}}\) is completely regular comes from the fact that it is a topological vector space, hence it has a uniform structure [30, Section I.1.4], and is Hausdorff, and any Hausdorff topological space has a uniform structure if and only if it is completely regular [30, Section B.6].

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Bercovici, H., Constantin, P., Foias, C., Manley, O.P.: Exponential decay of the power spectrum of turbulence. J. Stat. Phys. 80, 579–602 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourbaki, N.: Élements de mathématique. Fasc. XXXV. Livre VI: Intégration. Chapitre IX: Intégration sur les espaces topologiques séparés, Actualités Scientifiques et Industrielles, no. 1343, Hermann, Paris (1969)

  4. Brown, A., Pearcy, C.: Introduction to Operator Theory. I. Elements of Functional Analysis. Graduate Texts in Mathematics, vol. 55. Springer, New York (1977)

    Book  MATH  Google Scholar 

  5. Chekroun, M.D., Glatt-Holtz, N.E.: Invariant measures for dissipative dynamical systems: abstract results and applications. Commun. Math. Phys. 316(3), 723–761 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, P., Foias, C.: Navier–Stokes Equation. University of Chicago Press, Chicago (1989)

    MATH  Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  8. Dunford, N., Schwartz, J.T.: Linear Operators, I. General Theory, Pure and Applied Mathematics, vol. 7. Interscience, New York (1958)

    MATH  Google Scholar 

  9. Foias, C.: Statistical study of Navier–Stokes equations I. Rend. Semin. Mat. Univ. Padova 48, 219–348 (1972)

    MathSciNet  MATH  Google Scholar 

  10. Foias, C.: Statistical study of Navier–Stokes equations II. Rend. Semin. Mat. Univ. Padova 49, 9–123 (1973)

    MATH  Google Scholar 

  11. Foias, C.: Solutions Statistiques des Equations de Navier–Stokes. Cours au Collège de France (1974) (unpublished)

  12. Foias, C., Guillopé, C., Temam, R.: New a priori estimates for Navier–Stokes equations in dimension 3. Commun. Partial Differ. Equ. 6(3), 329–359 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foias, C., Manley, O.P., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  14. Foias, C., Prodi, G.: Sur les solutions statistiques des équations de Navier–Stokes. Ann. Mat. Pura Appl. 111(4), 307–330 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Foias, C., Rosa, R., Temam, R.: Topological properties of the weak global attractor of the three-dimensional Navier–Stokes equations. Discrete Contin. Dyn. Syst. 27(4), 1611–1631 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Foias, C., Rosa, R., Temam, R.: Properties of time-dependent statistical solutions of the three-dimensional Navier–Stokes equations. Ann. Inst. Fourier 63(6), 2515–2573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Foias, C., Rosa, R., Temam, R.: Convergence of time averages of weak solutions of the three-dimensional Navier–Stokes equations. J. Stat. Phys. 160, 519–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Foias, C., Temam, R.: On the Stationary of the Navier–Stokes Equations and Turbulence. Publications Mathematiques d’Orsay, no. 120-75-28, pp. 38–77 (1975)

  19. Foias, C., Temam, R.: Some analytic and geometric properties of the solutions of the Navier–Stokes equations. J. Math. Pures Appl. 58, 339–368 (1979)

    MathSciNet  MATH  Google Scholar 

  20. Foias, C., Temam, R.: The connection between the Navier–Stokes equations, dynamical systems, and turbulence theory. In: Crandall, M.G., Rabinowitz, P.H., Turner R.E.L. (eds.) Directions in Partial Differential Equations (Madison, WI, 1985), Publ. Math. Res. Center Univ. Wisconsin, vol. 54, pp. 55–73. Academic Press, Boston, MA (1987)

  21. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  22. Krylov, N., Bogoliubov, N.N.: La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire. Ann. Math. 38, 65–113 (1937)

    Article  MathSciNet  Google Scholar 

  23. Kuratowski, K.: Topology, vol. 1. Academic Press, New York (1966)

    MATH  Google Scholar 

  24. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow, Revised English edn. (Translated from the Russian by Richard A. Silverman). Gordon and Breach Science Publishers, New York (1963)

  25. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lukaszewicz, G., Real, J., Robinson, J.C.: Invariant measures for dissipative systems and generalised Banach limits. J. Dyn. Differ. Equ. 23(2), 225–250 (2011)

    Article  MATH  Google Scholar 

  27. Moschovakis, Y.N.: Descriptive Set Theory. North-Holland Publishing Co., Amsterdam (1980)

    MATH  Google Scholar 

  28. Pollicott, M., Yuri, M.: Dynamical Systems and Ergodic Theory. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  29. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  30. Scheffer, V.: Hausdorff measures and the Navier–Stokes equations. Commun. Math. Phys. 55, 97–112 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and Its Applications, vol. 2, 3rd edn. North-Holland Publishing Co., Amsterdam (1984). (Reedition in 2001 in the AMS Chelsea series, AMS, Providence)

    Google Scholar 

  32. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68 (2nd edn., 1997). Springer, New York (1988)

    Book  Google Scholar 

  33. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edn. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  34. Vishik, M.I., Fursikov, A.V.: Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier–Stokes equations. Sib. Math. J. 19(5), 710–729 (1978). (Translated from Sib. Mat. Sb. 19(5), 1005–1031, September–October (1978))

    Article  MathSciNet  MATH  Google Scholar 

  35. Vishik, M.I., Fursikov, A.V.: Mathematical Problems of Statistical Hydrodynamics. Kluwer, Dordrecht (1988)

    MATH  Google Scholar 

  36. Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79. Springer, New York (1982)

    Book  Google Scholar 

  37. Wang, X.: Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete Contin. Dyn. Syst. 23, 521–540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo M. S. Rosa.

Additional information

The authors dedicate this article to the memory of George Sell, with fond reminiscences of their friendly interactions with him, and with great admiration for his guidance and leadership in the theory of dynamics and dynamical systems, including the creation of the present journal.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partly supported by the National Science Foundation under the Grants NSF-DMS-1206438 and NSF-DMS-1109784, by the Research Fund of Indiana University, and by the CNPq, Brasília, Brazil, under the Grants 303654/2013-9 and 200826/2014-0 and the Cooperation Project 490124/2009-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foias, C., Rosa, R.M.S. & Temam, R.M. Properties of Stationary Statistical Solutions of the Three-Dimensional Navier–Stokes Equations. J Dyn Diff Equat 31, 1689–1741 (2019). https://doi.org/10.1007/s10884-018-9719-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9719-2

Keywords

Mathematics Subject Classification

Navigation