Skip to main content
Log in

Weighted Entropy of a Flow on Non-compact Sets

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Let \((X_i,\phi _i), i=1,2,\ldots ,k\) be continuous flows on compact metric spaces, and for each \(1\le i\le k-1\), \((X_{i+1},\phi _{i+1})\) be a factor of \((X_i,\phi _i)\). Let \(\mathbf{a}=(a_1,a_2,\ldots ,a_k)\in {\mathbb {R}}^k\) with \(a_1>0\) and \(a_i\ge 0\) for \(2\le i\le k\). Based on the theory of Carathéodory structure, this paper introduce the \(\mathbf{a}\)-weighted topological entropy of a flow on non-compact sets and the \(\mathbf{a}\)-weighted measure-theoretic entropy of a flow. We establish the variational principle and also investigate the relationship between the \(\mathbf{a}\)-weighted entropy and the classical \(\mathbf{a}\)-weighted entropy of time one map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov, L.M.: On the entropy of a flow. Dok. Akad. Nauk. SSSR 128, 873–875 (1959)

    Google Scholar 

  2. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Google Scholar 

  3. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)

    Google Scholar 

  4. Brin, M., Katok, A.: On local entropy. In: Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Mathematics, vol. 1007, pp. 30–38. Springer, Berlin (1983)

  5. Feng, D., Huang, W.: Variational principle for weighted topological pressure. J. Math. Pures Appl. 106, 411–452 (2016)

    Google Scholar 

  6. Pesin, Y.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. University of Chicago Press, Chicago (1997)

    Google Scholar 

  7. Phelps, R.P.: Lectures on Choquet’s Theorem. Springer, Berlin (2001)

    Google Scholar 

  8. Shen, J., Zhao, Y.: Entropy of a flow on non-compact sets. Open Syst. Inf. Dyn. 19(2), 1250015 (2012)

    Google Scholar 

  9. Sun, W., Vargas, E.: Entropy of flows, revisited. Bol. Soc. Bras. Mat. 30, 315–333 (1999)

    Google Scholar 

  10. Sun, W.: Entropy of orthonormal n-frame flows. Nonlinearity 829, 829–842 (2001)

    Google Scholar 

  11. Thomas, R.: Entropy of expensive flows. Erg. Thm. Dyn. Syst. 7, 611–625 (1987)

    Google Scholar 

  12. Thomas, R.: Topological entropy of fixed-points free flows. Trans. Am. Math. Soc. 319, 601–618 (1990)

    Google Scholar 

  13. Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Wen Huang for useful discussion. The authors would also like to thank the referee for the careful reading and useful comments that resulted in substantial improvements to this paper. Jinghua Shen was partially supported by a grant from USTS (341312104). Leiye Xu was partially supported by NSFC (11801538). Xiaomin Zhou was partially supported by NSFC (11801193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leiye Xu.

Appendix: A Weighted Version of the Brin–Katok Theorem

Appendix: A Weighted Version of the Brin–Katok Theorem

The main result in this Appendix is the weighted version of the Brin–Katok theorem.

Let \(k\ge 2\). Assume that \((X_i,d_i),i = 1,2,\ldots ,k\), are compact metric spaces, and \((X_i,T_i)\) are topological dynamical systems. Moreover, assume that for each \(1\le i\le k-1\), \((X_{i+1},T_{i+1})\) is a factor of \((X_i,T_i)\) with a factor map \(\pi _i : X_i \rightarrow X_{i+1}\); in other words, \(\pi _1,\pi _2,\ldots ,\pi _{k-1}\) are continuous maps so that the following diagrams commute.

For convenience, we use \(\pi _0\) to denote the identity map on \(X_1\). Define \(\tau _i : X_1\rightarrow X_{i+1}\) by \(\tau _i = \pi _i\circ \pi _{i-1}\circ \cdots \circ \pi _0\) for \(i = 0, 1,\ldots k-1\). Fix \(\mathbf{a} = (a_1,a_2,\ldots ,a_k)\in R^k\) with \(a_1 > 0\) and \(a_i\ge 0\) for \(i\ge 2.\)

For any \(n\in {\mathbb {N}}\), the n-th \(\mathbf{a}\)-weighted Bowen metric \(d_n^{\mathbf{a }}\) on \(X_1\) is defined by

$$\begin{aligned} d_n^{\mathbf{a }}(x, y) =\max \left\{ d_i\left( T_{i}^s \tau _{i-1}x,T_{i}^s \tau _{i-1}y\right) : 0\le s \le \lceil (a_1 + \cdots + a_i)n\rceil , i = 1,\ldots ,k\right\} . \end{aligned}$$

For every \(\epsilon >0\), we denote by \(B^\mathbf{a }_n(x, \epsilon )\) the open ball of radius \(\epsilon \) in the metric \(d_n^\mathbf{a }\) around x, i.e.,

$$\begin{aligned} B^\mathbf{a }_n(x,\epsilon ) =\left\{ y \in X : \ d_n^{\mathbf{a }}(x, y) < \epsilon \right\} . \end{aligned}$$

Theorem 7

Let \(\mu \) be invariant measure with \(h_\mu ^\mathbf{a}(T_1)<\infty \). Then for \(\mu \)-a.e. \(x\in X_1\)

(a):
$$\begin{aligned}&\lim _{\epsilon \rightarrow 0} \liminf _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}\\&\quad =\lim _{\epsilon \rightarrow 0} \limsup _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}\overset{def}{=}h_\mu ^\mathbf{a}(T_1,x); \end{aligned}$$
(b):

\(h_\mu ^\mathbf{a}(T_1,x)\) is \(T_1\)-invariant;

(c):

\(\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\mu (x)=h_\mu ^\mathbf{a}(T_1)\).

When \(\mathbf{a}=(1,0,\ldots , 0)\), the above result reduces to the Brin–Katok theorem on local entropy [4].

The proof of Theorem 7 is based on the following weighted version of the Shannon–McMillan–Breiman theorem [5].

Proposition 2

Let \((X,{\mathcal {B}},\mu ,T)\) be a measure preserving dynamical system and \(k\ge 1\). Let \(\alpha _1, \ldots , \alpha _k\) be k countable measurable partitions of \((X,{\mathcal {B}},\mu )\) with \(H_\mu (\alpha _i)<\infty \) for each i, and \(\mathbf{a}=(a_1,\ldots ,a_k)\in {\mathbb {R}}^k\) with \(a_1>0\) and \(a_i\ge 0\) for \(i\ge 2\). Then

$$\begin{aligned} \lim _{N\rightarrow +\infty }\frac{1}{N}I_\mu \left( \bigvee _{i=1}^k (\alpha _i)_0^{\lceil (a_1+\cdots +a_i)N\rceil -1} \right) (x)=\sum _{i=1}^k a_i{\mathbb {E}}_\mu (F_i|{\mathcal {I}}_\mu )(x) \end{aligned}$$
(9)

almost everywhere, where

$$\begin{aligned} F_i(x):=I_\mu \left( \bigvee _{j=i}^{k}\alpha _j\big |\bigvee _{n=1}^\infty T^{-n}\left( \bigvee _{j=i}^{k}\alpha _j\right) \right) (x), \quad i=1,\ldots ,k \end{aligned}$$

and \({\mathcal {I}}_\mu =\{ B\in {\mathcal {B}}:\; \mu (B\triangle T^{-1}B)=0\}\). In particular, if T is ergodic, we have

$$\begin{aligned} \lim _{N\rightarrow +\infty }\frac{1}{N}I_\mu \left( \bigvee _{i=1}^k (\alpha _i)_0^{\lceil (a_1+\cdots +a_i)N\rceil -1} \right) (x)=\sum _{i=1}^k a_ih_\mu \left( T,\bigvee _{j=i}^{k}\alpha _j\right) \end{aligned}$$

almost everywhere.

Proof of Theorem 7

We just adapt the proof of Brin and Katok [4] for their local entropy formula.

Let \(\epsilon >0\). Let \(\alpha _i\) be a finite Borel partition of \(X_i\), \(i=1,\ldots ,k\), with \(\text {diam}(\alpha _i)<\epsilon \). Then

$$\begin{aligned} B_n^\mathbf{a}(x,\epsilon )\supseteq \bigcap _{i=1}^k \left( \tau _{i-1}^{-1}\alpha _i\right) _0^{\lceil (a_1+\cdots +a_i)n\rceil -1}(x) \end{aligned}$$

for \(x\in X_1\). Hence by Proposition 2, for \(\mu \)-a.e \(x\in X_1\) we have

$$\begin{aligned}&\limsup _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}\le \limsup _{n\rightarrow +\infty } \frac{-\log \mu \left( \bigcap _{i=1}^k (\tau _{i-1}^{-1}\alpha _i)_0^{\lceil (a_1+\cdots +a_i)n\rceil -1}(x)\right) }{n}\\&\quad =\limsup _{n\rightarrow +\infty } \frac{I_\mu \left( \bigvee _{i=1}^k (\tau _{i-1}^{-1}\alpha _i)_0^{\lceil (a_1+\cdots +a_i)n\rceil -1}\right) (x)}{n}=\sum _{i=1}^k a_i{\mathbb {E}}_\mu (F_i|{\mathcal {I}}_\mu )(x) \end{aligned}$$

where

$$\begin{aligned} F_i(x):=I_\mu \left( \bigvee _{j=i}^{k}\alpha _j\big |\bigvee _{n=1}^\infty T^{-n}\left( \bigvee _{j=i}^{k}\alpha _j\right) \right) (x), \quad i=1,\ldots ,k \end{aligned}$$

and \({\mathcal {I}}_\mu =\{ B\in {\mathcal {B}}:\; \mu (B\triangle T^{-1}B)=0\}\). Moreover,

$$\begin{aligned} \int _{X_1}\limsup _{n\rightarrow +\infty }&\frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}d\mu (x)\le \int _{X_1}\sum _{i=1}^k a_i{\mathbb {E}}_\mu (F_i|{\mathcal {I}}_\mu )(x)d\mu (x) \nonumber \\&\le \sum _{i=1}^k a_ih_{\tau _{i-1}^{-1}}(T_i)=h_\mu ^\mathbf{a}(T_1). \end{aligned}$$
(10)

By the dominant convergence theorem, one has

$$\begin{aligned} \int _{X_1}\lim _{\epsilon \rightarrow 0}\limsup _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}d\mu (x) \le h_\mu ^\mathbf{a}(T_1). \end{aligned}$$
(11)

We proceed now to estimate from below. It is sufficient to show

$$\begin{aligned} \int _{X_1}\lim _{\epsilon \rightarrow 0}\liminf _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}d\mu (x) \ge h_\mu ^\mathbf{a}(T_1). \end{aligned}$$

First as in [4] we can construct finite Borel partitions \(\beta _i=\{ B^i_1,B^i_2,\ldots ,B^i_{v_i}\}\) of \(X_i\) for \(i=1, 2,\ldots ,k\), such that \(\mu \circ \tau _{i-1}^{-1}(\partial \beta _i)=0\) and \(\text{ diam }(\beta _i)\) are small enough so that

$$\begin{aligned} h_{\mu \circ \tau _{i-1}^{-1}}(T_i,\beta _i)\ge h_{\mu \circ \tau _{i-1}^{-1}}(T_i)-\delta . \end{aligned}$$

Next define the partitions \(\alpha _i\) of \(X_i\) recursively for \(i=k, k-1, \ldots , 1\), by setting \(\alpha _k=\beta _k\) and

$$\begin{aligned} \alpha _j=\beta _j\vee \pi _j^{-1}(\alpha _{j+1}) \quad \text{ for }\quad j=k-1,\ldots , 1. \end{aligned}$$

Then we have

  1. (1)

    \(\alpha _i\succeq \pi _i^{-1}(\alpha _{i+1})\) for \(i=1,\ldots ,k-1\).

  2. (2)

    \(\sum _{i=1}^k a_ih_{\mu \circ \tau _{i-1}^{-1}}(T_i,\alpha _i)\ge h_\mu ^\mathbf{a}(T_1)-(a_1+a_2+\cdots +a_k)\delta \).

  3. (3)

    \(\mu \circ \tau _{i-1}^{-1}(\partial \alpha _i)=0\) for \(i=1,\ldots ,k\).

Write \(\alpha _i=\{ A^i_1,A^i_2,\ldots ,A^i_{u_i}\}\) for \(i=1,\ldots , k\). Let \(M=\max \{u_i:\; 1\le i\le k\}\) and \(\Lambda =\{1,\ldots ,M\}\). Given \(m\in {\mathbb {N}}\), for \(\mathbf{s}=(s_i)_{i=0}^{m-1},\mathbf{t}=(t_i)_{i=0}^{k-1}\in \Lambda ^{\{0,1,\ldots ,m-1\}}\), the Hamming distance between \(\mathbf{s}\) and \(\mathbf{t}\) is defined to be the following value

$$\begin{aligned} \frac{1}{m}\#\left\{ i\in \{0,1,\ldots ,m-1\}: s_i\ne t_i\right\} . \end{aligned}$$

For \(\mathbf{s}\in \Lambda ^{\{0,1,\ldots ,m-1\}}\) and \(0<\tau \le 1\), let \(Q(\mathbf{s},\tau )\) be the total number of those \(\mathbf{t}\in \Lambda ^{\{0,1,\ldots ,m-1\}}\) so that the Hamming distance between \(\mathbf{s}\) and \(\mathbf{t}\) does not exceed \(\tau \). Clearly,

$$\begin{aligned} Q_m(\tau ):=\max \limits _{\mathbf{s}\in \Lambda ^{\{0,1,\ldots ,m-1\}}}Q(\mathbf{s},\tau )\le \left( {\begin{array}{c}m\\ \lceil m\tau \rceil \end{array}}\right) M^{\lceil m\tau \rceil }. \end{aligned}$$

By the Stirling formula, there exists a small \(0<\delta _1\) and a positive constant \(C:=C(\delta ,M)>0\) such that

$$\begin{aligned} \left( {\begin{array}{c}m\\ \lceil m\delta _1\rceil \end{array}}\right) M^{\lceil m\delta _1\rceil }\le e^{\delta m+C} \end{aligned}$$
(12)

for all \(m\in {\mathbb {N}}\).

For \(\eta >0\), set

$$\begin{aligned}&U^i_\eta (\alpha _i)=\{x\in X_1:\; B(\tau _{i-1}x,\eta )\not \subseteq \alpha _i(\tau _{i-1}x)\}, \quad i=1,\ldots ,k. \end{aligned}$$

Then \(\bigcap _{\eta >0} U^i_\eta (\alpha _i)=\tau _{i-1}^{-1}(\partial \alpha _i)\), and hence \(\mu (U^i_\eta (\alpha _i))\rightarrow \mu (\tau _{i-1}^{-1}(\partial \alpha _i))=0\) as \(\eta \rightarrow 0\). Therefore, we can choose \(\epsilon >0\) such that \(\mu (U^i_\eta (\alpha _i))<\delta \delta _1\) for any \(0<\eta \le \epsilon \) and \(i=1,\ldots ,k\).

By the Birkhoff’s ergodic theorem,

$$\begin{aligned} \lim _{n\rightarrow +\infty }&\frac{1}{\lceil (a_1+\cdots +a_k)n \rceil }\sum \limits _{i=1}^k \sum _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}\chi _{U^i_\epsilon (\alpha _i)}(T^j_1x) \end{aligned}$$

exists for almost every \(x\in X_1\), where we take the convention \(a_0=0\). Moreover

$$\begin{aligned}&\int _X\lim _{n\rightarrow +\infty } \frac{1}{\lceil (a_1+\cdots +a_k)n \rceil }\sum \limits _{i=1}^k \sum _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}\chi _{U^i_\epsilon (\alpha _i)}(T^j_1x)d\mu (x)\\&\quad =\frac{1}{(a_1+\cdots +a_k)} \sum \limits _{i=1}^k a_i\mu (U^i_\epsilon (\alpha _i))<\delta \delta _1, \end{aligned}$$

Thus we can find a large natural number \(\ell _0\) such that \(\mu (A_\ell )>1-\delta \) for any \(\ell \ge \ell _0\), where

$$\begin{aligned} A_\ell&=\left\{ x\in X_1:\;\frac{1}{\lceil (a_1+\cdots +a_k)n \rceil }\sum \limits _{i=1}^k \sum _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}\chi _{U^i_\epsilon (\alpha _i)}(T^j_1x)\right. \\&\quad \left. \le \frac{\delta _1\delta }{\delta } =\delta _1\text { for all }n\ge \ell \right\} . \end{aligned}$$

Since \(\tau _{0}^{-1}\alpha _1\succeq \tau _{1}^{-1}\alpha _2\succeq \cdots \succeq \tau _{k-1}^{-1}\alpha _k\), we have

$$\begin{aligned} \lim _{n\rightarrow +\infty } \frac{-\log \mu \left( \bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) (x)\right) }{n} =\sum _{i=1}^k a_i{\mathbb {E}}_\mu (F_i|{\mathcal {I}}_\mu )(x) \end{aligned}$$

almost everywhere by Proposition 2 where

$$\begin{aligned} F_i(x):=I_\mu \left( \bigvee _{j=i}^{k}\alpha _j\big |\bigvee _{n=1}^\infty T^{-n}(\bigvee _{j=i}^{k}\alpha _j)\right) (x), \quad i=1,\ldots ,k \end{aligned}$$

and \({\mathcal {I}}_\mu =\{ B\in {\mathcal {B}}:\; \mu (B\triangle T^{-1}B)=0\}\). For convenience, we note

$$\begin{aligned} m(x):=\sum _{i=1}^k a_i{\mathbb {E}}_\mu (F_i|{\mathcal {I}}_\mu )(x). \end{aligned}$$

It is clear, by the construction of \(\{\alpha _i\}_{i=1}^k\), that

$$\begin{aligned} \int _{X_1}m(x)d\mu (x)=\sum _{i=1}^k a_ih_{\tau _{i-1}^{-1}}(T_i,\alpha _i)\ge h_\mu ^\mathbf{a}(T_1)-(a_1+a_2+\cdots ,+a_k)\delta . \end{aligned}$$
(13)

For \(N\in {\mathbb {N}}\), put \(F_0^N=\{x\in X_1:m(x)\ge N\}\). By Proposition 2,

$$\begin{aligned} \lim _{N\rightarrow \infty }\int _{F_0^N}m(x)d\mu (x)=0 \end{aligned}$$
(14)

since \(h_\mu ^\mathbf{a}(T_1,\alpha )\le h_\mu ^\mathbf{a}(T_1)<\infty \). Put

$$\begin{aligned} F_m^N=\left\{ x\in X_1:m(x)\in \left[ \frac{m-1}{N},\frac{m}{N}\right) \right\} \quad \text {for}\quad m=1,2,\ldots ,N^2. \end{aligned}$$

Hence we can find a large natural number \(\ell _1\) such that \(\mu (B_{\ell ,m}^N)>\mu (F_m^N)-\delta \) for any \(\ell \ge \ell _1\) and \(m\in \{1,2,\ldots ,N^2\}\), where \(B_{\ell ,m}^N\) is the set of all points \(x\in F_m^N\) such that

$$\begin{aligned} \frac{-\log \mu \left( \bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{m-1}^{-1}\alpha _i \right) (x)\right) }{n}\ge \frac{m-1}{N}-\delta \end{aligned}$$
(15)

for all \(n\ge \ell \).

Fix \(\ell \ge \max \{ \ell _0,\ell _1\}\). Let \(E_m^N=A_\ell \cap B_{\ell ,m}^N\). Then \(\mu (E_m^N)>\mu (F_m^N)-2\delta \). For \(x\in X_1\) and \(n\in {\mathbb {N}}\), the unique element

$$\begin{aligned} C(n,x)=(C_j(n,x))_{j=0}^{\lceil (a_1+\cdots +a_k)n\rceil -1} \end{aligned}$$

in \(\Lambda ^{\{0,1,\ldots ,\lceil (a_1+\cdots +a_k)n\rceil -1\}}\) satisfying that \(T_1^jx\in \tau _{i-1}^{-1}(A^i_{C_j(n,x)})\) for \(\lceil (a_0+\cdots +a_{i-1})n\rceil \le j\le \lceil (a_1+\cdots +a_i)n\rceil -1\), \(i=1,\ldots ,k\), is called the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of x. Since each point in one atom A of \(\bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) \) has the same \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name, we define

$$\begin{aligned} C(n,A):=C(n,x) \end{aligned}$$

for any \(x\in A\), which is called the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of A.

Now if \(y\in B_n^\mathbf{a}(x,\epsilon )\), then for \(i=1,\ldots ,k\) and \(\lceil (a_0+\cdots +a_{i-1})n\rceil \le j\le \lceil (a_1+\cdots +a_i)n\rceil -1\), either \(T_1^jx\) and \(T_1^jy\) belong to the same element of \(\tau _{i-1}^{-1}\alpha _i\) or \(T_1^jx\in U^i_\epsilon (\alpha _i)\). Hence if \(x\in E\), \(n\ge \ell \) and \(y\in B_n^\mathbf{a}(x,\epsilon )\), then the Hamming distance between \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of x and y does not exceed \(\delta _1\). Furthermore, \(B_n^\mathbf{a}(x,\epsilon )\) is contained in the set of points y whose \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name is \(\delta _1 \)-close to \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of x. It is clear that the total number \(L_n(x)\) of such \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-names admits the following estimate:

$$\begin{aligned} L_n(x)&\le \left( {\begin{array}{c}\lceil (a_1+\cdots +a_k)n\rceil \\ \lceil \lceil (a_1+\cdots +a_k)n\rceil \delta _1\rceil \end{array}}\right) M^{\lceil \lceil (a_1+\cdots +a_k)n\rceil \delta _1\rceil }\\&\le e^{\delta \lceil (a_1+\cdots +a_k)n\rceil +C}\\&\le e^{(a_1+\cdots +a_k)\delta n+C+\delta } \end{aligned}$$

where the second inequality comes from (12). More precisely, we have shown that for any \(x\in X_1\) and \(n\ge \ell \),

$$\begin{aligned} \begin{aligned}&B^\mathbf{a}_n(x,\epsilon )\subseteq \{ y\in X_1: C(n,y)\text { is }\delta _1 \text {-close to } C(n,x)\}\\&\quad =\bigcup \left\{ A\in \bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) : C(n,A)\text { is }\delta _1 \text {-close to } C(n,x)\right\} \qquad \end{aligned} \end{aligned}$$
(16)

and

$$\begin{aligned} \begin{aligned}&\#\left\{ A\in \bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) : C(n,A)\text { is }\delta _1 \text {-close to } C(n,x)\right\} \\&\quad \le e^{(a_1+\cdots +a_k)\delta n+C+\delta }. \end{aligned} \end{aligned}$$
(17)

Now for \(n\in {\mathbb {N}},m\in \{1,2,\ldots ,N^2\}\), let \(E_{n,m}^N\) denote the set of points x in \(E_m^N\) such that there exists an element A in \(\bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) \) with

$$\begin{aligned} \mu (A)>e^{\left( -\frac{m-1}{N}+(2+a_1+\cdots +a_k)\delta \right) n} \end{aligned}$$

and the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of A is \(\delta _1\)-close to the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of x. It is clear that if \(x\in E_m^N\setminus E_{n,m}^N\), then for each \(A\in \bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) \) whose \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name is \(\delta _1\)-close to the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of x, one has

$$\begin{aligned} \mu (A)\le e^{\left( -\frac{m-1}{N}+(2+a_1+\cdots +a_k)\delta \right) n}. \end{aligned}$$

In the following, we wish to estimate the measure of \(E_{n,m}^N\) for \(n\ge \ell \).

Let \(n\ge \ell \). Put

$$\begin{aligned} {\mathcal {F}}_{n,m}^N=\left\{ A\in \bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{m-1}^{-1}\alpha _i \right) : \mu (A)>e^{\left( -\frac{m-1}{N}+(2+a_1+\cdots +a_k)\delta \right) n}\right\} . \end{aligned}$$

Obviously,

$$\begin{aligned} \#{\mathcal {F}}_{n,m}^N\le e^{\left( \frac{m-1}{N}-(2+a_1+\cdots +a_k)\delta \right) n} \end{aligned}$$

since \(\mu (X_1)=1\).

Let \(x\in E_{n,m}^N\). On the one hand since \(x\in B_{l,m}^N\),

$$\begin{aligned} \mu \left( \bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{m-1}^{-1}\alpha _i \right) (x)\right) \le e^{\left( -\frac{m-1}{N}+\delta \right) n} \end{aligned}$$

by (15). On the other hand by the definition of \(E_{n,m}^N\), there exists \(A\in {\mathcal {F}}_{n,m}^N\) with the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of A is \(\delta _1\)-close to the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of x, that is the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of A is \(\delta _1\)-close to the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of

$$\begin{aligned} \left( \bigvee _{i=1}^k \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) (x). \end{aligned}$$

According to this, we have

$$\begin{aligned} E_{n,m}^N\subset \bigcup \{B:B\in {\mathcal {G}}_{n,m}^N\} \end{aligned}$$
(18)

where \({\mathcal {G}}_{n,m}^N\) denotes the set of all elements B in \(\bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{m-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) \) satisfying \(\mu (B)\le e^{\left( -\frac{m-1}{N}+\delta \right) n}\) and the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of B is \(\delta _1\)-close to the \((\{\alpha _i\}_{i=1}^k,\mathbf{a};n)\)-name of A for some \(A\in {\mathcal {F}}_n^N\).

Since for each \(A\in {\mathcal {F}}_n^N\), the total number of B in \(\bigvee _{i=1}^k \left( \bigvee _{j=\lceil (a_0+\cdots +a_{i-1})n\rceil }^{\lceil (a_1+\cdots +a_i)n\rceil -1}T_1^{-j}\tau _{i-1}^{-1}\alpha _i \right) \), whose \((\{\alpha _i\},\mathbf{a};n)\)-name is \(\delta _1\)-close to the \((\{\alpha _i\},\mathbf{a};n)\)-name of A, is upper bounded by

$$\begin{aligned} \left( {\begin{array}{c}\lceil (a_1+\cdots +a_k)n\rceil \\ \lceil \lceil (a_1+\cdots +a_k)n\rceil \delta _1\rceil \end{array}}\right) M^{\lceil \lceil (a_1+\cdots +a_k)n\rceil \delta _1\rceil }\le e^{(a_1+\cdots +a_k)\delta n+C+\delta }. \end{aligned}$$

Hence

$$\begin{aligned} \#{\mathcal {G}}_{n,m}^N\le e^{(a_1+\cdots +a_k)\delta n+C+\delta }\cdot \left( \# {\mathcal {F}}_{n,m}^N\right) \le e^{\left( \frac{m-1}{N}-2\delta \right) n+C+\delta }. \end{aligned}$$

Moreover

$$\begin{aligned} \mu (E_{n,m}^N)\le e^{\left( -\frac{m-1}{N}+\delta \right) n}\cdot \left( \#{\mathcal {G}}_{n,m}^N\right) \le e^{-\delta n+C+\delta } \end{aligned}$$

by (18) and the definition of \({\mathcal {G}}_{n,m}^N\).

Next we take \(\ell _2\ge \ell \) so that \(\sum _{n=\ell _2}^\infty e^{-\delta n+C+\delta }<\delta \). Then \( \mu (\bigcup _{n\ge \ell _2}E_{n,m}^N)<\delta \). Let \(D_m^N=E_m^N\setminus \bigcup _{n\ge \ell _2}E_{n,m}^N\). Then \(\mu (D_m^N)>\mu (E_m^N)-\delta >\mu (F_m^N)-3\delta \). For \(x\in D_m^N\) and \(n\ge \ell _2\), one has

$$\begin{aligned} \mu (B_n^\mathbf{a}(x,\epsilon ))&\le e^{(a_1+\cdots +a_k)\delta n+C+\delta }\cdot e^{\left( -\frac{m-1}{N}+(2+a_1+\cdots +a_k)\delta \right) n}\\&=e^{\left( -\frac{m-1}{N}+2(1+a_1+\cdots +a_k)\delta \right) n+C+\delta } \end{aligned}$$

by (16), (17) and the definition of \(E_{n,m}^N\). Thus for \(x\in D_m^N\),

$$\begin{aligned} \liminf _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}&\ge \frac{m-1}{N}-2(1+a_1+\cdots +a_k)\delta . \end{aligned}$$

Thus

$$\begin{aligned}&\int _{X_1}\liminf _{n\rightarrow +\infty } \frac{-\log \mu \left( B_n^\mathbf{a}(x,\epsilon )\right) }{n}d\mu (x)\ge \sum _{m=1}^{N^2}\int _{D_i}\liminf _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}d\mu (x)\\&\quad \ge \sum _{m=1}^{N^2}\left( \frac{m-1}{N}-2(1+a_1+\cdots +a_k)\delta \right) \cdot \mu (D_m^N)\\&\quad \ge \sum _{m=1}^{N^2}\frac{m}{N}\cdot (\mu (F_m^N)-3\delta )-2(1+a_1+\cdots +a_k)\delta -\frac{1}{N}\\&\quad >\sum _{m=1}^{N^2}\int _{F_m^N}m(x)d\mu (x)-2(1+a_1+\cdots +a_k)\delta -\frac{1}{N}-\sum _{m=1}^{N^2}\frac{3m}{N}\delta \\&\quad =\int _{X_1}m(x)d\mu (x)-\int _{F_0^N}m(x)d\mu (x)-2(1+a_1+\cdots +a_k)\delta -\frac{1}{N}-\frac{3}{2}(N^3+N)\delta \\&\quad \ge h_\mu ^\mathbf{a}(T_1)-\int _{F_0^N}m(x)d\mu (x)-3(1+a_1+\cdots +a_k)\delta -\frac{1}{N}-\frac{3}{2}(N^3+N)\delta . \end{aligned}$$

Since \(\liminf _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}\) increase as \(\epsilon \) decrease, then

$$\begin{aligned}&\int _{X_1}\lim _{\epsilon \rightarrow 0}\liminf _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}d\mu (x)\ge h_\mu ^\mathbf{a}(T_1)\\&\quad -\int _{F_0^N}m(x)d\mu (x)-3(1+a_1+\cdots +a_k)\delta -\frac{1}{N}-\frac{3}{2}(N^3+N)\delta . \end{aligned}$$

Let \(\delta \rightarrow 0\), \(N\rightarrow \infty \) successively. We have by (14)

$$\begin{aligned} \int _{X_1}\lim _{\epsilon \rightarrow 0}\liminf _{n\rightarrow +\infty } \frac{-\log \mu \left( B_n^\mathbf{a}(x,\epsilon )\right) }{n}d\mu (x)\ge h_\mu ^\mathbf{a}(T_1). \end{aligned}$$
(19)

Combining (19) with (11), one has

$$\begin{aligned} \lim _{\epsilon \rightarrow 0}&\liminf _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}d\mu (x)\nonumber \\&=\lim _{\epsilon \rightarrow 0}\limsup _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}d\mu (x) \overset{def}{=}h_\mu ^\mathbf{a}(T_1,x) \end{aligned}$$
(20)

for \(\mu \)-a.e. \(x\in X_1\) since \(h_\mu ^\mathbf{a}(T_1)<\infty \). (a) and (c) is immediately from (11),(19) and (20). Since

$$\begin{aligned} B_n^\mathbf{a}(T_1x,\delta )\supseteq B_{n+1}^\mathbf{a}(x,\delta ). \end{aligned}$$

It follows from (a) that

$$\begin{aligned} h_\mu ^\mathbf{a}(T_1,x)\ge h_\mu ^\mathbf{a}(T_1,T_1x). \end{aligned}$$

The last inequality together with (c) gives (b). This finishes the proof. \(\square \)

Since \({\mathcal {M}}_{T_1}\) is a compact convex set we can use the Choquet representation theorem to express each member of \({\mathcal {M}}_{T_1}\) in terms of the ergodic members of \({\mathcal {M}}_{{T_1}}\). For each \(\mu \in {\mathcal {M}}_{T_1}\), there is a unique measure \(\nu _\mu \) on the Borel subsets of the compact metrisable space \({\mathcal {M}}_{T_1}\) such that \(\nu _\mu ({\mathcal {E}}_{{T_1}})=1\) and \(\forall f\in C(X_1)\)

$$\begin{aligned} \int _{X_1}f(x)d\mu _(x)=\int _{{\mathcal {E}}_{{T_1}}}\left( \int _{X_1}f(x)dm(x)\right) d\nu _\mu (m). \end{aligned}$$

We write \(\mu =\int _{{\mathcal {E}}_{{T_1}}}md\nu _\mu (m)\) and call this the ergodic decomposition of \(\mu \) (see [7]). Using the ergodic decomposition, we can define

$$\begin{aligned} h^\mathbf{a,u}_\mu ({T_1}):=\sup \{s\in {\mathbb {R}}:\nu _\mu \left( \{m\in {\mathcal {E}}_{{T_1}}:h^\mathbf{a}_m({T_1})>s\right) \}>0\}. \end{aligned}$$

We have the following Corollary.

Corollary 1

Let \(\mu \) be invariant probability measure with \(h_\mu ^\mathbf{a}(T_1)<\infty \). Then

$$\begin{aligned} {\overline{ess}}\{h_\mu ^\mathbf{a}(T_1,x):x\in X_1\}=h_\mu ^\mathbf{a,u}(T_1) \end{aligned}$$

where \({\overline{ess}}\{h_\mu ^\mathbf{a}(T_1,x):x\in X_1\}\) is the upper bound of \(s\in {\mathbb {R}}\) such that

$$\begin{aligned} \mu \{x\in X_1:h_\mu ^\mathbf{a}(T_1,x)>s\}>0. \end{aligned}$$

Proof

First we are to show that \(h_\mu ^\mathbf{a}(T_1,x)\le h_\mu ^\mathbf{a,u}(T_1)\) for \(\mu \)-a.e. \(x\in X_1\). We can assume that \(h_\mu ^\mathbf{a,u}(T_1)<\infty ,\) otherwise we have nothing to prove. Given positive number \(\gamma >0\), put

$$\begin{aligned} E_\gamma =\left\{ x:\lim _{\epsilon \rightarrow 0} \limsup _{n\rightarrow +\infty } \frac{-\log \mu (B_n^\mathbf{a}(x,\epsilon ))}{n}>h_\mu ^\mathbf{a,u}(T_1)+\gamma \right\} . \end{aligned}$$

By Theorem 7(b), (c), it is clear that \(\mu (E_\gamma \triangle T_1^{-1}E_\gamma )=0\) and \(\mu (E_\gamma ^c)>0\). If \(\mu (E_\gamma )>0\), define measure \(\mu _1\) and \(\mu _2\) by

$$\begin{aligned} \mu _1(B)=\frac{\mu (E_\gamma \cap B)}{\mu (E_\gamma )}\text { and } \mu _2(B)=\frac{\mu (E_\gamma ^c\cap B)}{\mu (E_\gamma ^c)},\ \ B\in {\mathcal {B}}(X_1). \end{aligned}$$

Note that \(\mu _1,\mu _2\in {\mathcal {M}}_{T_1}\), we have the unique ergodic decomposition

$$\begin{aligned} \mu _1=\int _{{\mathcal {E}}_{T_1}}md\nu _{\mu _1}(m)\text { and } \mu _2=\int _{{\mathcal {E}}_{T_1}}md\nu _{\mu _2}(m). \end{aligned}$$

Notice that \(\mu =\mu (E_\gamma )\mu _1+(1-\mu (E_\gamma ))\mu _2\), we have

$$\begin{aligned} \mu&=\mu (E_\gamma )\int _{{\mathcal {E}}_{{T_1}}}md\nu _{\mu _1}(m)+\mu (E_\gamma ^c)\int _{{\mathcal {E}}_{T_1}}md\nu _{\mu _2}(m)\\&=\int _{{\mathcal {E}}_{T_1}}md\left( \mu (E_\gamma )\nu _{\mu _1}+\mu (E_\gamma ^c)\nu _{\mu _2}\right) (m). \end{aligned}$$

Suppose the ergodic decomposition of \(\mu \) is

$$\begin{aligned} \mu =\int _{{\mathcal {E}}_{T_1}}md\nu _{\mu }(m). \end{aligned}$$
(21)

By the uniqueness of ergodic decomposition, we have

$$\begin{aligned} \nu _{\mu }=\mu (E_\gamma )\nu _{\mu _1}+\mu (E_\gamma ^c)\nu _{\mu _2}. \end{aligned}$$

Hence \(\nu _{\mu _1}\ll \nu _{\mu }\). Therefore

$$\begin{aligned} h_{\mu _1}^\mathbf{a}(T_1)\le h_{\mu _1}^\mathbf{a,u}(T_1)\le h_{\mu }^\mathbf{a,u}(T_1). \end{aligned}$$
(22)

However,

$$\begin{aligned} h_{\mu _1}^\mathbf{a}(T_1)&=\int _{X_1}\lim _{\epsilon \rightarrow 0} \limsup _{n\rightarrow +\infty }\frac{-\log \mu _1\left( B_n^\mathbf{a}(x,\epsilon )\right) }{n}d\mu _1(x)\\&\ge \int _{X_1}\lim _{\epsilon \rightarrow 0} \limsup _{n\rightarrow +\infty }\frac{-\log \frac{1}{\mu (E_\gamma )}\mu \left( B_n^\mathbf{a}(x,\epsilon )\right) }{n}d\mu _1(x)\\&=\int _{X_1}\lim _{\epsilon \rightarrow 0} \limsup _{n\rightarrow +\infty }\frac{-\log \mu \left( B_n^\mathbf{a}(x,\epsilon )\right) }{n}d\mu _1(x)\ge h_{\mu }^\mathbf{a,u}+\gamma . \end{aligned}$$

It would be in contradiction with (22). Hence \(h_\mu ^\mathbf{a}(T_1,x)\le h_\mu ^\mathbf{a,u}(T_1)+\gamma \). We have \(h_\mu ^\mathbf{a}(T_1,x)\le h_\mu ^\mathbf{a,u}(T_1)\) by taking \(\gamma \searrow 0\).

Next, we are to show \({\overline{ess}}\{h_\mu ^\mathbf{a}(T_1,x):x\in X_1\}\ge h_\mu ^\mathbf{a,u}(T_1)\). As in (21), we have the ergodic decomposition \(\nu _\mu \) of \(\mu \). If \(h_m^\mathbf{a}(T_1)=h_\mu ^\mathbf{a,u}(T_1)\), for \(\nu _\mu \)-a.e. \(m\in {\mathcal {E}}_{T_1}\), we have

$$\begin{aligned} h_\mu ^\mathbf{a,u}(T_1)=h_\mu ^\mathbf{a}(T_1)=\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\mu (x)<\infty . \end{aligned}$$

Since \(h_\mu ^\mathbf{a}(T_1,x)\le h_\mu ^\mathbf{a,u}(T_1)\) for \(\mu \)-a.e. \(x\in X_1\), it is clear that \(h_\mu ^\mathbf{a}(T_1,x)=h_\mu ^\mathbf{a,u}(T_1)\) for \(\mu \)-a.e. \(x\in X_1\).

Now, we suppose

$$\begin{aligned} \nu _\mu \left\{ m\in {\mathcal {E}}_{T_1}:h_m^\mathbf{a}(T_1)<h_\mu ^\mathbf{a,u}(T_1)\right\} >0. \end{aligned}$$

Clearly, in this case, there exists \(0<s_0<h_\mu ^\mathbf{a,u}(T_1)\) such that

$$\begin{aligned} \nu _\mu \left( \left\{ m\in {\mathcal {E}}_{T_1}:h_m^\mathbf{a}(T_1)<s_0\right\} \right) >0. \end{aligned}$$

For \(s_0<s<h_\mu ^\mathbf{a,u}(T_1)\). Put \({\mathcal {E}}=\{m\in {\mathcal {E}}_{T_1}:h_m^\mathbf{a}(T_1)\le s\}\) and define measure \(\rho _1\) and \(\rho _2\) by

$$\begin{aligned} \rho _1=\frac{\int _{{\mathcal {E}}}md\nu _{\mu }(m)}{\nu _\mu ({\mathcal {E}})}\text { and } \rho _2=\frac{\int _{{\mathcal {E}}^c}md\nu _{\mu }(m)}{\nu _\mu ({\mathcal {E}}^c)}. \end{aligned}$$

\(\rho _1\) and \(\rho _2\) is well defined since both \(\nu _\mu ({\mathcal {E}})\) and \(\nu _\mu ({\mathcal {E}}^c)\) are positive. It is clear that

$$\begin{aligned} \mu =\nu _\mu ({\mathcal {E}})\rho _1+\nu _\mu ({\mathcal {E}}^c)\rho _2. \end{aligned}$$

On the one hand

$$\begin{aligned} h_{\mu }^\mathbf{a}(T_1)= \nu _\mu ({\mathcal {E}})h_{\rho _1}^\mathbf{a}(T_1)+\nu _\mu ({\mathcal {E}}^c)h_{\rho _2}^\mathbf{a}(T_1). \end{aligned}$$
(23)

On the other hand

$$\begin{aligned} h_{\mu }^\mathbf{a}(T_1)&= \int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\mu (x)=\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\left( \nu _\mu ({\mathcal {E}})\rho _1+\nu _\mu ({\mathcal {E}}^c)\rho _2\right) (x)\\&=\nu _\mu ({\mathcal {E}})\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\rho _1(x)+\nu _\mu ({\mathcal {E}}^c)\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\rho _2(x). \end{aligned}$$

For \(\rho _1\)-a.e. \(x\in X_1\)

$$\begin{aligned} h_\mu ^\mathbf{a}(T_1,x)&=\lim _{\epsilon \rightarrow 0} \limsup _{n\rightarrow +\infty }\frac{-\log \mu \left( B_n^\mathbf{a}(x,\epsilon )\right) }{n}\\&=\lim _{\epsilon \rightarrow 0} \limsup _{n\rightarrow +\infty }\frac{-\log \left( \left( \nu _\mu ({\mathcal {E}})\rho _1+\nu _\mu ({\mathcal {E}}^c)\rho _2\right) \left( B_n^\mathbf{a}(x,\epsilon )\right) \right) }{n}\\&\le \lim _{\epsilon \rightarrow 0} \limsup _{n\rightarrow +\infty }\frac{-\log \left( \nu _\mu ({\mathcal {E}})\rho _1\left( B_n^\mathbf{a}(x,\epsilon )\right) \right) }{n}\\&=h_{\rho _1}^\mathbf{a}(T_1,x). \end{aligned}$$

Hence

$$\begin{aligned} \begin{aligned} h_{\mu }^\mathbf{a}(T_1)&=\nu _\mu ({\mathcal {E}})\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\rho _1(x)+\nu _\mu ({\mathcal {E}}^c)\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\rho _2(x)\\&\le \nu _\mu ({\mathcal {E}})\int _{X_1}h_{\rho _1}^\mathbf{a}(T_1,x)d\rho _1(x)+\nu _\mu ({\mathcal {E}}^c)\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\rho _2(x)\\&=\nu _\mu ({\mathcal {E}})h_{\rho _1}^\mathbf{a}(T_1)+\nu _\mu ({\mathcal {E}}^c)\int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\rho _2(x). \end{aligned} \end{aligned}$$
(24)

Combining (24) and (23), one has

$$\begin{aligned} \int _{X_1}h_\mu ^\mathbf{a}(T_1,x)d\rho _2(x)\ge h_{\rho _2}^\mathbf{a}(T_1)>s. \end{aligned}$$

Hence

$$\begin{aligned} \rho _2\left( \{x\in X_1:h_\mu ^\mathbf{a}(T_1,x)>s\}\right) >0 \end{aligned}$$

which implies

$$\begin{aligned} \mu \left( \{x\in X_1:h_\mu ^\mathbf{a}(T_1,x)>s\}\right) \ge \nu _\mu ({\mathcal {E}}^c)\rho _2\left( \left\{ x\in X_1:h_\mu ^\mathbf{a}(T_1,x)>s\right\} \right) >0. \end{aligned}$$

Hence \({\overline{ess}}\{h_\mu ^\mathbf{a}(T_1,x):x\in X_1\}>s.\) We have

$$\begin{aligned} {\overline{ess}}\{h_\mu ^\mathbf{a}(T_1,x):x\in X_1\}\ge h_\mu ^\mathbf{a,u}(T_1) \end{aligned}$$

by taking \(s\rightarrow h_\mu ^\mathbf{a,u}(T_1)\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Xu, L. & Zhou, X. Weighted Entropy of a Flow on Non-compact Sets. J Dyn Diff Equat 32, 181–203 (2020). https://doi.org/10.1007/s10884-018-9715-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9715-6

Keywords

Navigation