Skip to main content
Log in

Quasi-Periodic Solutions for Fractional Nonlinear Schrödinger Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We establish an infinite dimensional KAM theorem with dense normal frequency. As an application, we use this theorem to study the Fractional NLS

$$\begin{aligned} iu_t-|\partial _x|^{1\over 2}u+M_\xi u=\epsilon f(|u|^2)u,\quad x\in {\mathbb T},t\in {\mathbb R}, \end{aligned}$$

where f is real analytic in a neighborhood of \(0\in {\mathbb C}\) and \(\epsilon >0\) is small enough. We obtain a family of small-amplitude quasi-periodic solutions with linear stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The norm \(\Vert \cdot \Vert _{D(r,s), \mathcal O}\) for scalar functions is defined in (2.4).

References

  1. Bambusi, D.: On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 12, 823–850 (1999)

    Article  MathSciNet  Google Scholar 

  2. Berti, M., Biasco, L., Procesi, M.: KAM theory for the Hamiltonian derivative wave equation. Ann. Sci. Ec. Norm. Super. 46, 299–371 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Bourgain, J.: Quasi periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J.: Nonlinear Schrödinger Equations. Park City Series 5. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  5. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211, 498–525 (2000)

    Article  MathSciNet  Google Scholar 

  6. Craig, W., Sulem, C.: Mapping properties of normal forms transformations for water waves. Boll. Unione Mat. Ital. 9(2), 289–318 (2016)

    Article  MathSciNet  Google Scholar 

  7. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MathSciNet  Google Scholar 

  8. Craig, W., Worfolk, P.A.: An integrable normal form for water waves in infnite depth. Physica D 84, 513–531 (1995)

    Article  MathSciNet  Google Scholar 

  9. Eliasson, L.H., Grébert, B., Kuksin, S.B.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26, 1588–1715 (2016)

    Article  MathSciNet  Google Scholar 

  10. Eliasson, L.H., Kuksin, S.B.: KAM for the non-linear Schröinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MathSciNet  Google Scholar 

  11. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinburgh Sect. A 142(6), 1237–1262 (2012)

    Article  Google Scholar 

  12. Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307, 383–427 (2011)

    Article  MathSciNet  Google Scholar 

  13. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226(6), 5361–5402 (2011)

    Article  MathSciNet  Google Scholar 

  14. Geng, J., You, J.: A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J. Differ. Equ. 209, 1–56 (2005)

    Article  Google Scholar 

  15. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262, 343–372 (2006)

    Article  MathSciNet  Google Scholar 

  16. Ionescu, A., Pusateri, F.: Nonlinear fractional Schröinger equations in one dimension. J. Funct. Anal. 266, 139–176 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kappeler, T., Liang, Z.: A KAM theorem for the defocusing NLS equation with periodic boundary conditions. J. Differ. Equ. 252, 4068–4113 (2012)

    Article  Google Scholar 

  18. Kuksin, S.B.: Nearly Integrable Infinite Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, vol. 1556. Springer, Berlin (1993)

    Book  Google Scholar 

  19. Kuksin, S.B.: A KAM-theorem for equations of the Korteweg-de Vries type. Rev. Math. Phys. 10, 1–64 (1998)

    Article  MathSciNet  Google Scholar 

  20. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MathSciNet  Google Scholar 

  21. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 561–569 (2002)

    Article  MathSciNet  Google Scholar 

  22. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys. 307(3), 629–673 (2011)

    Article  MathSciNet  Google Scholar 

  23. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71, 269–296 (1996)

    Article  MathSciNet  Google Scholar 

  24. Pöschel, J.: A KAM theorem for some nonlinear partial differential equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 23, 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Procesi, M., Xu, X.: Quasi-Töplitz functions in KAM theorem. SIAM J. Math. Anal. 45, 2148–2181 (2013)

    Article  MathSciNet  Google Scholar 

  26. Wayne, C.E.: Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  MathSciNet  Google Scholar 

  27. Wu, J., Xu, X.: A KAM theorem for some partial differential equations in one dimension. Proc. Am. Math. Soc. 144(5), 2149–2160 (2016)

    Article  MathSciNet  Google Scholar 

  28. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl. Mech. Tech. Phys. 2, 190–194 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xindong Xu.

Additional information

This work is partially supported by NSFC Grants 11301072 and 11771077. This work is also supported by NSFC Grant 11571072.

A Appendix

A Appendix

Lemma A.1

For \(p> {1\over 2}\), \(\rho >0\), The space \({\ell }^{\rho , p}\) is a Banach algebra with respect to convolution of sequences, and

$$\begin{aligned}\Vert q*r \Vert _{\rho ,p }\le c \Vert q \Vert _{\rho ,p }\Vert r \Vert _{\rho ,p }\end{aligned}$$

with constant c depending only on p.

For the proof of Lemma A.1, see [5, 14, 20, 23].

Lemma A.2

(Lemma 2.1 of [25]). For any regular analytic function fg in D(rs) and \(C^1_W\) in \(\mathcal O\) with finite semi-norm 2.6, one has

$$\begin{aligned} \Vert [X_f,X_g]\Vert _{ r',s'}\le 2^{2d+1}\delta ^{-1} \Vert X_f\Vert _{ r,s}\Vert X_g\Vert _{r,s},\end{aligned}$$
$$\begin{aligned} \Vert X_{\{f,g\}}\Vert _{r',s'}\le 2^{2d+1}\delta ^{-1}\Vert X_f\Vert _{ r,s}\Vert X_g\Vert _{r,s},\quad \end{aligned}$$

where \(\delta = (\frac{r'}{r})^2 \min ( s-s',1-\frac{r}{r}')\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X. Quasi-Periodic Solutions for Fractional Nonlinear Schrödinger Equation. J Dyn Diff Equat 30, 1855–1871 (2018). https://doi.org/10.1007/s10884-017-9630-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9630-2

Keywords

Mathematics Subject Classification

Navigation