Skip to main content
Log in

Spiky Steady States of a Chemotaxis System with Singular Sensitivity

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the steady state problem of a chemotaxis model with singular sensitivity function in a one dimensional spatial domain. Using the chemotactic coefficient \(\chi \) as the bifurcation parameter, we perform local and global bifurcation analysis for the model. It is shown that positive monotone steady states exist as long as \(\chi \) is larger than the first bifurcation value \(\bar{\chi }_1.\) We further obtain asymptotic profiles of these steady states, as \(\chi \) becomes large. In particular, our results show that the cell density function forms a spike, which models the important physical phenomenon of cell aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N.D.: \(L^p\) bounds of solutions of reaction–diffusion equations. Commun. Part. Differ. Equ. 4, 827–868 (1979)

    Article  MathSciNet  Google Scholar 

  2. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chen, X., Hao, J., Wang, X., Wu, Y., Zhang, Y.: Stability of spiky solution of Keller–Segel’s minimal chemotaxis model. J. Differ. Equ. 257, 3102–3134 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chertock, A., Kurganov, A., Wang, X., Wu, Y.: On a chemotaxis model with saturated chemotactic flux. Kinet. Relat. Models 5, 51–95 (2012)

    Article  MathSciNet  Google Scholar 

  5. Childress, S., Perkus, J.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  Google Scholar 

  6. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  Google Scholar 

  7. Eisenbach, M.: Chemotaxis. Imperial College Press, London (2004)

    Book  Google Scholar 

  8. Fitzpatrick, P.M., Pejsachowicz, J.: Parity and generalized multiplicity. Trans. Am. Math. Soc. 326, 281–305 (1991)

    Article  MathSciNet  Google Scholar 

  9. Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424, 675–684 (2015)

    Article  MathSciNet  Google Scholar 

  10. Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity 29, 2417–2450 (2016)

    Article  MathSciNet  Google Scholar 

  11. Fujie, K., Tomomi, Y.: Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity. Appl. Math. Lett. 38, 140–143 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gui, C., Wei, J.: Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differ. Equ. 158, 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  13. Gui, C., Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Can. J. Math. 52, 522–538 (2000)

    Article  MathSciNet  Google Scholar 

  14. Gui, C., Wei, J., Matthias, W.: Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 47–82 (2000)

    Article  MathSciNet  Google Scholar 

  15. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  16. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis. Jahresber DMV 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis. Jahresber DMV 106, 51–69 (2004)

    MATH  Google Scholar 

  18. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  19. Keller, E., Segel, L.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  Google Scholar 

  20. Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72, 1–27 (1988)

    Article  MathSciNet  Google Scholar 

  21. Liu, P., Shi, J., Wang, Z.: Pattern formation of the attraction–repulsion Keller–Segel system. Discrete Contin. Dyn. Syst. Ser. B 18, 2597–2625 (2013)

    Article  MathSciNet  Google Scholar 

  22. Nagai, T., Senba, T., Yoshida, K.: Global existence of solutions to the parabolic systems of chemotaxis. RIMS Hokyuroku 1997, 22–28 (1009)

    MATH  Google Scholar 

  23. Nanjundiah, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Article  Google Scholar 

  24. Ni, W.-M.: Diffusion, cross-diffusion, and their spike-layer steady states. Not. Am. Math. Soc. 45, 9–18 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Ni, W.-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)

    Article  MathSciNet  Google Scholar 

  26. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Patlak, C.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Article  MathSciNet  Google Scholar 

  28. Pejsachowicz, J., Rabier, P.J.: Degree theory for \(C^1\) Fredholm mappings of index \(0\). J. Anal. Math. 76, 289–319 (1998)

    Article  MathSciNet  Google Scholar 

  29. Shi, J., Wang, X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246, 2788–2812 (2009)

    Article  MathSciNet  Google Scholar 

  30. Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal. Real World Appl. 12, 3727–3740 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Wang, Q.: On the steady state of a shadow system to the SKT competition model. Discrete Contin. Dyn. Syst. Ser. B 19, 2941–2961 (2014)

    Article  MathSciNet  Google Scholar 

  32. Wang, X.: Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics. SIAM J. Math. Anal. 31, 535–560 (2000)

    Article  MathSciNet  Google Scholar 

  33. Wang, X., Xu, Q.: Spiky and transition layer steady states of chemotaxis systems via global bifurcation theory and Helly’s compactness theorem. J. Math. Biol. 66, 1241–1266 (2013)

    Article  MathSciNet  Google Scholar 

  34. Wang, Z.: Mathematics of traveling waves in chemotaxis—review paper. Discrete Contin. Dyn. Syst. Ser. B 18, 601–641 (2013)

    Article  MathSciNet  Google Scholar 

  35. Wei, J.: Existence and Stability of Spikes for the Gierer–Meinhardt System. Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 5, pp. 487–585. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  36. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2011)

    Article  MathSciNet  Google Scholar 

  37. Xiang, T.: A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete Contin. Dyn. Syst. Ser. B 18, 2457–2485 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huicong Li.

Additional information

This project is partially supported by China Postdoctoral Science Foundation (No. 2016M590335) and National Natural Science Foundation of China (Nos. 11701180 and 11671144).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H. Spiky Steady States of a Chemotaxis System with Singular Sensitivity. J Dyn Diff Equat 30, 1775–1795 (2018). https://doi.org/10.1007/s10884-017-9621-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9621-3

Keywords

Mathematics Subject Classification

Navigation