Skip to main content
Log in

Stability of the Camassa–Holm Multi-peakons in the Dynamics of a Shallow-Water-Type System

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Consideration herein is the stability issue of a variety of superpositions of the Camassa–Holm peakons and antipeakons in the dynamics of the two-component Camassa–Holm system, which is derived in the shallow water theory. These wave configurations accommodate the ordered trains of the Camassa–Holm peakons, the ordered trains of Camassa–Holm antipeakons and peakons as well as the Camassa–Holm multi-peakons. Using the features of conservation laws and the monotonicity properties of the local energy, we prove the orbital stability of these wave profiles in the energy space by the modulation argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and a theorem of Stieltjes. Inverse Probl. 15, L1–L4 (1999)

    Article  Google Scholar 

  2. Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154, 229–257 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. Mech. Anal. 5, 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  5. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked soliton. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  6. Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  7. Chen, R.M., Liu, X.C., Liu, Y., Qu, C.Z.: Stability of the Camassa–Holm peakons in the dynamics of a shallow-water-type system. Calc. Var. Partial Differ. Equ. 55, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  8. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  9. Constantin, A.: On the scattering problem for the Camassa–Holm equation. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 1457, 953–970 (2001)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  12. Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A., Ivanov, R.I.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  15. Constantin, A., Mckean, H.P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  16. Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Physica D 157, 75–89 (2001)

    Article  MathSciNet  Google Scholar 

  17. Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  18. El Dika, K., Martel, Y.: Stability of \(N\) solitary waves for the generalized BBM equations. Dyn. Partial Differ. Equ. 1, 401–437 (2004)

    Article  MathSciNet  Google Scholar 

  19. El Dika, K., Molinet, L.: Stability of multipeakons. Ann. Inst. Henri Poincaré Anal. Nonlinéarire 26, 1517–1532 (2009)

    Article  MathSciNet  Google Scholar 

  20. El Dika, K., Molinet, L.: Stability of multi antipeakon–peakons profile. Discrete Contin. Dyn. Syst. 12, 561–577 (2009)

    Article  MathSciNet  Google Scholar 

  21. El Dika, K., Molinet, L.: Exponential decay of \(H^1\)-localized solutions and stability of the train of \(N\) solitary waves for the Camassa–Holm equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365, 2313–2331 (2007)

    Article  MathSciNet  Google Scholar 

  22. Escher, J., Lechtenfeld, O., Yin, Z.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19, 493–513 (2007)

    Article  MathSciNet  Google Scholar 

  23. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  24. Grunert, K.: Blow-up for the two-component Camassa–Holm system. Discrete Contin. Dyn. Syst. 35, 2041–2051 (2015)

    Article  MathSciNet  Google Scholar 

  25. Grunert, K., Holden, H., Raynaud, X.: Global solution for the two component Camassa–Holm system. Commun. Partial Differ. Equ. 37, 2245–2271 (2012)

    Article  MathSciNet  Google Scholar 

  26. Grunert, K., Holden, H., Raynaud, X.: A continuous interpolation between conservative and dissipative solutions for the two-component Camassa–Holm system. Forum Math. Sigma 3, 73 (2015)

    Article  MathSciNet  Google Scholar 

  27. Gui, G., Liu, Y.: On the global existence and wave-breaking criteria for the two component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    Article  MathSciNet  Google Scholar 

  28. Gui, G., Liu, Y.: On the Cauchy problem for the two-component Camassa–Holm system. Math. Z. 268, 45–66 (2011)

    Article  MathSciNet  Google Scholar 

  29. Holden, H., Raynaud, X.: A convergent numerical scheme for the Camassa–Holm equation based on multipeakons. Discrete Conti. Dyn. Syst. Ser. A 14, 505–523 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Ivanov, R.: Two-component integrable systems modelling shallow water waves: the constant vorticity case. Wave Motion 46, 389–396 (2009)

    Article  MathSciNet  Google Scholar 

  31. Johnson, R.S.: The Camassa-Holm equation for water waves moving over a shear flow. Fluid Dyn. Res. 33, 97–111 (2003)

    Article  MathSciNet  Google Scholar 

  32. Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217, 393–430 (2005)

    Article  MathSciNet  Google Scholar 

  33. Lenells, J.: Classification of all travelling-wave solutions for some nonlinear dispersive equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365, 2291–2298 (2007)

    Article  MathSciNet  Google Scholar 

  34. Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  Google Scholar 

  35. Liu, X.: Stability of the trains of \(N\) solitary waves for the two-component Camassa–Holm shallow water system. J. Differ. Equ. 260, 8403–8427 (2016)

    Article  MathSciNet  Google Scholar 

  36. Martel, Y., Merle, F., Tsai, T.P.: Stability and asymptotic stability in the energy space of the sum of \(N\) solitons for subcritical gKdV equations. Commun. Math. Phys. 231, 347–373 (2002)

    Article  MathSciNet  Google Scholar 

  37. Mustafa, O.: On smooth traveling waves of an integrable two component Camassa–Holm shallow water system. Wave Motion 46, 397–402 (2009)

    Article  MathSciNet  Google Scholar 

  38. Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    Article  MathSciNet  Google Scholar 

  39. Shabat, A., Martínez Alonso, L.: On the prolongation of a hierarchy of hydrodynamic chains, In: Shabat, A.B. et al. (ed.) New Trends in Integrability and Partial Solvability. Proceedings of the NATO Advanced Research Workshop, NATO Science Workshop (Cadiz, Spain 2002). Kluwer, Dordrecht, pp. 263–280 (2004)

    Chapter  Google Scholar 

  40. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  41. Zhang, P., Liu, Y.: Stability of solitary waves and wave-breaking phenomena for the two-component Camassa–Holm system. Int. Math. Res. Not. IMRN 211, 1981–2021 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is prepared under the guidance of my advisor, Y. Liu. The author wants to take this opportunity to express her sincere gratitude to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T. Stability of the Camassa–Holm Multi-peakons in the Dynamics of a Shallow-Water-Type System. J Dyn Diff Equat 30, 1627–1659 (2018). https://doi.org/10.1007/s10884-017-9612-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9612-4

Keywords

Mathematics Subject Classification

Navigation