Skip to main content
Log in

Topological Pressure of Generic Points for Amenable Group Actions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Let (XG) be a G-action topological dynamical system (t.d.s. for short), where G is a countably infinite discrete amenable group. In this paper, we study the topological pressure of the sets of generic points. We show that when the system satisfies the almost specification property, for any G-invariant measure \(\mu \) and any continuous map \(\varphi \),

$$\begin{aligned} P\left( X_{\mu },\varphi ,\{F_n\}\right) = h_{\mu }(X)+\int \varphi d\mu , \end{aligned}$$

where \(\{F_n\}\) is a Følner sequence, \(X_{\mu }\) is the set of generic points of \(\mu \) with respect to (w.r.t. for short) \(\{F_n\}\), \(P(X_{\mu },\varphi ,\{F_n\})\) is the topological pressure of \(X_{\mu }\) for \(\varphi \) w.r.t. \(\{F_n\}\) and \(h_{\mu }(X)\) is the measure-theoretic entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)

    Article  MathSciNet  Google Scholar 

  2. Bowen, R.: Some systems with unique equilibrium states. Theory Comput. Syst. 8(3), 193–202 (1974)

    MathSciNet  MATH  Google Scholar 

  3. Chung, N.P., Li, H.: Homoclinic groups, IE groups, and expansive algebraic actions. Invent. Math. 199(3), 805–858 (2015)

    Article  MathSciNet  Google Scholar 

  4. Danilenko, A.I.: Entropy theory from the orbital point of view. Monatsh. Math. 134(2), 121–141 (2001)

    Article  MathSciNet  Google Scholar 

  5. Dooley, A.H., Golodets, V.Y., Zhang, G.: Sub-additive ergodic theorems for countable amenable groups. J. Funct. Anal. 267(5), 1291–1320 (2014)

    Article  MathSciNet  Google Scholar 

  6. Downarowicz, T., Huczek, D., Zhang, G.: Tilings of amenable groups. J. Reine Angew. Math. (to appear)

  7. Huang, W., Ye, X., Zhang, G.: Local entropy theory for a countable discrete amenable group action. J. Funct. Anal. 261(4), 1028–1082 (2011)

    Article  MathSciNet  Google Scholar 

  8. Kerr, D., Li, H.: Ergodic Theory: Independence and Dichotomies. Springer, Berlin (2017)

    MATH  Google Scholar 

  9. Lindenstrauss, E.: Pointwise theorems for amenable groups. Invent. Math. 146(2), 259–295 (2001)

    Article  MathSciNet  Google Scholar 

  10. Ornstein, D.S., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48, 1–141 (1987)

    Article  MathSciNet  Google Scholar 

  11. Pesin, Y.B., Pitskel’, B.S.: Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl. 18(4), 307–318 (1984)

    Article  MathSciNet  Google Scholar 

  12. Pfister, C.E., Sullivan, W.G.: Large deviations estimates for dynamical systems without the specification property. Application to the \(\beta \)-shifts. Nonlinearity 18(1), 237–261 (2004)

    Article  MathSciNet  Google Scholar 

  13. Pfister, C.E., Sullivan, W.G.: On the topological entropy of saturated sets. Ergod. Theory Dyn. Syst. 27, 929–956 (2007)

    Article  MathSciNet  Google Scholar 

  14. Ren, X.: Topologcial pressure and the variational principle for amenable group action from dimensional view. arXiv:1506.02095v2 [math.DS] 30 Sep 2015

  15. Rudolph, D.J., Weiss, B.: Entropy and mixing for amenable group actions. Ann. Math. (2) 151(3), 1119–1150 (2002)

    Article  MathSciNet  Google Scholar 

  16. Weiss, B.: Actions of amenable groups, Topics in Dynamics and Ergodic Theory, London Mathematical Society Lecture Note Series, vol. 310, pp. 226–262. Cambridge Univ. Press, Cambridge (2003)

  17. Ward, T., Zhang, Q.: The Abramov–Rokhlin entropy addition formula for amenable group actions. Monatsh. Math. 114(3–4), 317–329 (1992)

    Article  MathSciNet  Google Scholar 

  18. Yamamoto, K.: Topological pressure of the set of generic points of \(\mathbb{Z}^d\)-actions. Kyushu J. Math. 63, 191–208 (2009)

    Article  MathSciNet  Google Scholar 

  19. Zhao, Y.: Measure-theoretic pressure for amenable group action. Colloq. Math. 148(1), 87–106 (2017)

    Article  MathSciNet  Google Scholar 

  20. Zheng, D., Chen, E.: Topological entropy of sets of generic points for actions of amenable groups. arXiv:1602.08242v1 [math.DS] 26 Feb 2016

  21. Zheng, D., Chen, E.: Bowen entropy for actions of amenable group. Israel J. Math. 212(2), 895–911 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Hanfeng Li for all the help while the author was visiting SUNY at Buffalo, part of this work was done during that period. The author also wants to thank Prof. Xiangdong Ye for valuable suggestions. The author would like to thank the referee for careful reading and valuable suggestions. The author was partially supported by Chinese Scholarship Council and NSFC(11671094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Zhang.

Appendices

Appendix A: Proof of Proposition 2.5

Before proceeding with the proof, we first need to prove a lemma.

Lemma 5.1

Let \(\delta >0\), \(A,B,S,E \subset F(G)\) and \(P=(S\cup \{e\})(S\cup \{e\})^{-1}\),

  1. (1)

    If \(PA \cap B =\emptyset \), then \(PB\cap A=\emptyset \).

  2. (2)

    If E is \((P,\delta )\)-invariant and set \(\tilde{E}=\{c \in E: Pc \subset E\}\), then \(|E {\setminus } \tilde{E}|<\delta |E|\).

Proof

(1). Assume that \(PB \cap A \ne \emptyset \), then there exist \(a \in A, b\in B,s_1,s_2 \in S\cup \{e\}\) with \(s_1(s_2)^{-1}b=a\), thus \(s_2(s_1)^{-1}a=b\) which implies \(PA \cap B \ne \emptyset \), a contradiction.

(2). Note that \(e \in P\), then \(E {\setminus } \tilde{E} \subset \partial _{P}E\) and hence \(|E {\setminus } \tilde{E}|\le |\partial _{P}E| <\delta |E|\). \(\square \)

Proof of Proposition 2.5

The proof is similar to Proposition 2.1 in [13]. Let g be a mistake-density function and define \(H: (0,1) \rightarrow F(G)\) as follows

$$\begin{aligned} H(\varepsilon )=(K\cup \{e\})(K\cup \{e\})^{-1}, \end{aligned}$$

where \(K \subset F(G)\) as in Definition 2.4 w.r.t. \(\varepsilon \).

Let \(\Delta _j^{'}=2^{-j}, j\in \mathbb {N}\), and we define two maps \(M:(0,1) \rightarrow F(G)\) and \(\delta :(0,1) \rightarrow (0,1)\) as follows:

$$\begin{aligned} M(\varepsilon )=H(\Delta _j^{'}), \delta (\varepsilon )=g(\Delta _j^{'})\,\, \text {when}\,\, 2\Delta _j^{'} \le \varepsilon <2\Delta _{j-1}^{'}. \end{aligned}$$

Then we define the map \(m:(0,1) \rightarrow F(G)\times (0,1)\) as \(m(\varepsilon )=(M(\varepsilon ),\delta (\varepsilon ))\), next we will show this map is we need as in Definition 2.2.

For any \(\varepsilon _1,\varepsilon _2,\dots ,\varepsilon _p>0\) and any \(x_1,x_2,\dots ,x_p \in X\), it is sufficient to prove for \(\varepsilon _i\) of the form \(2\Delta _{j_i}^{'}, i=1,2,\dots ,k\). We rewrite \(\{\varepsilon _1,\varepsilon _2,\dots ,\varepsilon _p\}\) and \(\{x_1,x_2,\dots ,x_p\}\) as \(\{\varepsilon _1^{'}>\varepsilon _2^{'}>\dots >\varepsilon _k^{'}\}\) and \(\{y_{i,j}:1 \le j \le l_i, 1 \le i \le k\}\), where \(\varepsilon _i^{'}=2\Delta _{t_i}^{'}, i=1,2,\dots , k\). We just need to show that when \(F_{i,j}\in F(G)\) is \(m(\varepsilon _i^{'})\)-invariant and \(\{F_{i,j}: 1 \le j \le l_i, 1\le i \le k\}\) are pairwise disjoint, then

$$\begin{aligned} \bigcap _{i=1}^{k}\bigcap _{j=1}^{l_i}B(g;F_{i,j},y_{i,j},\varepsilon _i^{'})\ne \emptyset . \end{aligned}$$
(*)

The \((*)\) can be proved in k-steps.

Step 1 Note that \(m(\varepsilon _1^{'})=(M(\varepsilon _1^{'}),\delta (\varepsilon _1^{'})) =(H(\varepsilon _{1}^{'}/2),g(\varepsilon _1^{'}/2))\). For \( 1 \le j \le l_1\), \(F_{1,j}\) is \(m(\varepsilon _1^{'})\)-invariant. We set \(\tilde{F}_{1,j}:=\{c\in F_{1,j}: H(\varepsilon _1^{'}/2)c \subset F_{1,j}\}\), then

$$\begin{aligned} H(\varepsilon _1^{'}/2)\tilde{F}_{1,i} \cap \tilde{F}_{1,j} =\emptyset , 1 \le i \ne j \le l_1. \end{aligned}$$

By weak specification property, there exists \(z_1 \in X\) such that

$$\begin{aligned} d(hz_1,hy_{1,j}) \le \frac{\varepsilon _1^{'}}{2}, \ \ \forall h \in \tilde{F}_{1,j}, \ \ j=1,2,\dots l_1, \end{aligned}$$

and by Lemma 5.1 (2),

$$\begin{aligned} |F_{1,j} {\setminus } \tilde{F}_{1,j}| <g(\varepsilon _1^{'}/2) |F_{1,j}|, 1 \le j \le l_1, \end{aligned}$$

which implies

$$\begin{aligned} z_1 \in \bigcap _{j=1}^{l_1}B(g;F_{1,j},y_{1,j},\varepsilon _1^{'}/2)\subset \bigcap _{j=1}^{l_1}B(g;F_{1,j},y_{1,j},\varepsilon _1^{'}). \end{aligned}$$

Step 2 Note that \(m(\varepsilon _2^{'})=(M(\varepsilon _2^{'}),\delta (\varepsilon _2^{'})) =(H(\varepsilon _{2}^{'}/2),g(\varepsilon _2^{'}/2))\). For \( 1 \le j \le l_2\), \(F_{2,j}\) is \(m(\varepsilon _2^{'})\)-invariant. We set \(\tilde{F}_{2,j}:=\{c\in F_{2,j}: H(\varepsilon _2^{'}/2)c \subset F_{2,j}\}\), then

$$\begin{aligned} H(\varepsilon _2^{'}/2)\tilde{F}_{2,i} \cap \tilde{F}_{2,j} =\emptyset , 1 \le i \ne j \le l_2, \end{aligned}$$

and

$$\begin{aligned} H(\varepsilon _2^{'}/2)\tilde{F}_{2,i} \cap \bigcup _{j=1}^{l_1}\tilde{F}_{1,j} =\emptyset , 1 \le i \le l_2, \end{aligned}$$

by Lemma 5.1 (1) we also have

$$\begin{aligned} H(\varepsilon _2^{'}/2)\left( \bigcup _{j=1}^{l_1}\tilde{F}_{1,j}\right) \cap \tilde{F}_{2,i} =\emptyset , 1 \le i \le l_2. \end{aligned}$$

Then by weak specification property, there exists \(z_2 \in X\) such that

$$\begin{aligned} d(hz_2,hy_{2,j}) \le \frac{\varepsilon _2^{'}}{2}, \ \ \forall h \in \tilde{F}_{2,j}, \ \ j=1,2,\dots l_2, \end{aligned}$$

and

$$\begin{aligned} d(hz_2,hz_1) \le \frac{\varepsilon _2^{'}}{2}, \ \ \forall h \in \bigcup _{j=1}^{l_1}\tilde{F}_{1,j}. \end{aligned}$$

Hence

$$\begin{aligned} d(hz_2,hy_{1,j}) \le d(hz_2,hz_1)+d(hz_1,hy_{1,j}) \le \frac{\varepsilon _1^{'}}{2}+\frac{\varepsilon _2^{'}}{2} <\varepsilon _1^{'}, \ \ \forall h \in \tilde{F}_{1,j}, 1 \le j \le l_1. \end{aligned}$$

By Lemma 5.1 (2),

$$\begin{aligned} |F_{2,j} {\setminus } \tilde{F}_{2,j}| <g(\varepsilon _2^{'}/2) |F_{2,j}|, 1 \le j \le l_2, \end{aligned}$$

hence

$$\begin{aligned} z_2 \in \left( \bigcap _{j=1}^{l_1}B\left( g;F_{1,j},y_{1,j}, \frac{\varepsilon _1^{'}}{2}+\frac{\varepsilon _2^{'}}{2}\right) \right) \cap \left( \bigcap _{j=1}^{l_2}B\left( g;F_{2,j},y_{2,j}, \frac{\varepsilon _2^{'}}{2}\right) \right) \end{aligned}$$

Continuing in this way, after \(k-1\) steps, we have \(\tilde{F}_{i,j} \subset F_{i,j}\) with

$$\begin{aligned} |F_{i,j} {\setminus } \tilde{F}_{i,j}|<g(\varepsilon _i^{'}/2)|F_{i,j}| \le g(\varepsilon _i^{'})|F_{i,j}|, 1 \le j \le l_i, 1 \le i \le k-1 \end{aligned}$$

and \(z_{k-1} \in X\) such that

$$\begin{aligned} z_{k-1} \in \bigcap _{i=1}^{k-1}\bigcap _{j=1}^{l_i}B\left( g;F_{i,j},y_{i,j}, \sum _{j=i}^{k-1}\frac{\varepsilon _j^{'}}{2}\right) . \end{aligned}$$

Step k Note that \(m(\varepsilon _k^{'})=(M(\varepsilon _k^{'}),\delta (\varepsilon _k^{'}))=(H(\varepsilon _{k}^{'}/2),g(\varepsilon _k^{'}/2))\). For \( 1 \le j \le l_k\), \(F_{k,j}\) is \(m(\varepsilon _k^{'})\)-invariant. We set \(\tilde{F}_{k,j}:=\{c\in F_{k,j}: H(\varepsilon _k^{'}/2)c \subset F_{k,j}\}\), then

$$\begin{aligned} H(\varepsilon _k^{'}/2)\tilde{F}_{k,i} \cap \tilde{F}_{k,j} =\emptyset , 1 \le i \ne j \le l_k, \end{aligned}$$

and

$$\begin{aligned} H(\varepsilon _k^{'}/2)\tilde{F}_{k,i} \cap \left( \bigcup _{t=1}^{k-1}\bigcup _{j=1}^{l_t}\tilde{F}_{t,j}\right) =\emptyset , 1 \le i \le l_k, \end{aligned}$$

by Lemma 5.1 (1) we also have

$$\begin{aligned} H(\varepsilon _k^{'}/2)\left( \bigcup _{t=1}^{k-1}\bigcup _{j=1}^{l_t}\tilde{F}_{t,j}\right) \cap \tilde{F}_{k,i} =\emptyset , 1 \le i \le l_k. \end{aligned}$$

Then by weak specification property, there exists \(z_k \in X\) such that

$$\begin{aligned} d(hz_k,hy_{k,j}) \le \frac{\varepsilon _k^{'}}{2}, \ \ \forall h \in \tilde{F}_{k,j}, \ \ j=1,2,\dots l_k, \end{aligned}$$

and

$$\begin{aligned} d(hz_k,hz_{k-1}) \le \frac{\varepsilon _k^{'}}{2}, \ \ \forall h \in \bigcup _{t=1}^{k-1}\bigcup _{j=1}^{l_t}\tilde{F}_{t,j} . \end{aligned}$$

Hence \( \forall h \in \tilde{F}_{i,j}, 1 \le j \le l_i, 1\le i \le k-1\),

$$\begin{aligned} d(hz_k,hy_{i,j}) \le d(hz_k,hz_{k-1})+d(hz_{k-1},hy_{i,j}) \le \frac{\varepsilon _k^{'}}{2}+\sum _{t=i}^{k-1}\frac{\varepsilon _t^{'}}{2}=\sum _{t=i}^{k}\frac{\varepsilon _t^{'}}{2}<\varepsilon _i^{'}. \end{aligned}$$

By Lemma 5.1 (2),

$$\begin{aligned} |F_{k,j} {\setminus } \tilde{F}_{k,j}| <g(\varepsilon _k^{'}/2) |F_{k,j}| \le g(\varepsilon _k^{'}) |F_{k,j}|, 1 \le j \le l_k, \end{aligned}$$

hence

$$\begin{aligned} z_k \in \bigcap _{i=1}^{k}\bigcap _{j=1}^{l_i}B(g;F_{i,j},y_{i,j}, \varepsilon _i^{'}), \end{aligned}$$

and the proposition is proved. \(\square \)

Appendix B: Proof of Lemma 2.7

Here is the amenable version of Proposition 2.1 in [12],

Lemma 6.1

Let (XG) be a t.d.s., \(\{K_n\}\) be a Følner sequence and \(\mu \in E(X,G)\). Let \(h^* < h_{\mu }(X)\). Then there exists \(\delta ^*>0\) and \(\varepsilon ^*>0\) such that for each neighbourhood \(F \subset M(X)\) of \(\mu \), there exists \(n_F^* \in \mathbb {N}\) such that for any \(n \ge n_F^*\), there exists \(\Gamma _n \subset X_{K_n,F}\) which is \((K_{n},\delta ^*, \varepsilon ^*)\)-separated and satisfies

$$\begin{aligned} |\Gamma _n|\ge e^{|K_n|h^*}. \end{aligned}$$

Proof

The proof is the basically the same as Proposition 2.1 in [12]. The only difference is that in the proof of Proposition 2.1 in [12], for the case of zero entropy, the authors applied the pointwise ergodic theorem to ensure that \(X_{K_n,F} \ne \emptyset \). Here we can use the mean ergodic theorem (see Theorem 3.23 in [8] for example) to show that \(X_{K_n,F} \ne \emptyset \). So we do not need to assume the Følner sequence to be tempered. \(\square \)

With the above Lemma and Lemma 4.2, we have the following lemma.

Lemma 6.2

Let (XG) be a t.d.s., \(\{K_n\}\) be a Følner sequence and \(\mu \in E(X,G)\), then

$$\begin{aligned} h_{\mu }(X)=h_{\mu }(X,\{K_n\})=\lim _{\varepsilon \rightarrow 0}\lim _{\delta \rightarrow 0}\underline{s}(\mu ; \delta , \varepsilon ,\{K_n\}). \end{aligned}$$

Proof

The lemma is proved by Lemmas 6.1 and 4.2. \(\square \)

Now we can prove Lemma 2.7.

Proof of Lemma 2.7

Let \(\mu =\int _{E(X,G)}\tau d \pi (\tau )\) be the ergodic decomposition of \(\mu \), where \(\pi \) is the corresponding Borel probability measure on E(XG). Then by the Monotone-convergence theorem and Lemma 6.2 we have

$$\begin{aligned}&\lim _{\varepsilon \rightarrow 0}\lim _{\delta \rightarrow 0}\int _{E(X,G)} \underline{s}(\tau ;\delta ,\varepsilon ,\{K_n\})d\pi (\tau )\\&\quad =\int _{E(X,G)} \lim _{\varepsilon \rightarrow 0}\lim _{\delta \rightarrow 0} \underline{s}(\tau ;\delta ,\varepsilon ,\{K_n\})d\pi (\tau )\\&\quad =\int _{E(X,G)} h_{\tau }(X)d\pi (\tau )=h_{\mu }(X). \end{aligned}$$

Then there exist \(\delta ^*>0,\varepsilon ^*>0\) such that

$$\begin{aligned} \int _{E(X,G)} \underline{s}(\tau ; \delta ^*,\varepsilon ^*)d\pi (\tau )>h_{\mu }(X)-\frac{\eta }{3}, \end{aligned}$$

where \(\eta :=h_{\mu }(X)-h>0\).

Let \(\{A_1,A_2,\dots ,A_p\}\) be a partition of M(XG) with diameter less than t / 2 and \(a_i=\pi (A_i)\), choose \(\mu _i \in A_i\cap E(X,G)\) such that

$$\begin{aligned} \underline{s}(\mu _i;\delta ^*,\varepsilon ^*)>\sup _{\tau \in A_i \cap E(X,G)}\underline{s}(\mu _i;\delta ^*,\varepsilon ^*)-\frac{\eta }{3}. \end{aligned}$$

Then we have

$$\begin{aligned} D\left( \mu ,\sum _{i=1}^{p}a_i\mu _i\right) <t/2 \,\,\text {and }\,\, \sum _{i=1}^{p}a_i\underline{s}(\mu _i;\delta ^*,\varepsilon ^*)>h_{\mu }(X)-\frac{2}{3}\eta . \end{aligned}$$

Note that \(D(\mu ,\sum _{i=1}^{p}a_i\mu _i)\) and \(\sum _{i=1}^{p}a_i\underline{s}(\mu _i;\delta ^*,\varepsilon ^*)\) vary continuously on \(\{(a_1,a_2,\dots ,a_p){:}\sum _{i=1}^{p}a_i=1\}\), the lemma is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R. Topological Pressure of Generic Points for Amenable Group Actions. J Dyn Diff Equat 30, 1583–1606 (2018). https://doi.org/10.1007/s10884-017-9610-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9610-6

Keywords

Mathematics Subject Classification

Navigation