Skip to main content
Log in

Platonic Polyhedra, Periodic Orbits and Chaotic Motions in the \(N\)-body Problem with Non-Newtonian Forces

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider the \(N\)-body problem with interaction potential \(U_\alpha =\frac{1}{\vert x_i-x_j\vert ^\alpha }\) for \(\alpha >1\). We assume that the particles have all the same mass and that \(N\) is the order \(\vert \mathcal {R}\vert \) of the rotation group \(\mathcal {R}\) of one of the five Platonic polyhedra. We study motions that, up to a relabeling of the \(N\) particles, are invariant under \(\mathcal {R}\). By variational techniques we prove the existence of periodic and chaotic motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \(\mathcal {T}\) the rotation group of the Tetrahedron of order \(12\), \(\mathcal {O}\) the rotation group of Hexahedron and Octahedron of order \(24\) and \(\mathcal {I}\) the group of Icosahedron and Dodecahedron of order \(60\).

  2. Animations of (\(\mathcal {T}, \nu _4\)) (Electronic supplementary material 3), (\(\mathcal {O}, \nu _7\)) (Electronic supplementary material 6), (\(\mathcal {I}, \nu _3\)) (Electronic supplementary material 2) are available in the online supplementary material.

  3. For animation of the motions in Table 2 see [3] and the online supplementary material: (\(\mathcal {O}, \nu _1\)) (Electronic supplementary material 4), (\(\mathcal {O}, \nu _2\)) (Electronic supplementary material 5), (\(\mathcal {I}, \nu _1\)) (Electronic supplementary material 1).

  4. \(r_p\) is the radius of the circumcircle of a regular polygon with \(o(p)\) sides of unitary length.

  5. See also the online supplementary materials (\(\mathcal {O}, \nu _1\)) (Electronic supplementary material 7), (\(\mathcal {O}, \nu _2\)) (Electronic supplementary material 8).

References

  1. Fusco, G., Gronchi, G.F., Negrini, P.: Platonic polyhedra, topological constraints and periodic solutions of the classical \(N\)-body problem. Invent. Math. 185, 283–332 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cundy, H., Rollett, A.P.: Mathematical Models. Clarendon, Oxford (1954)

    Google Scholar 

  3. http://adams.dm.unipi.it/~gronchi/nbody.html. Accessed 24 Sept 2014

  4. Ferrario, D.L.: Transitive decomposition of symmetry groups for the \(n\)-body problem. Adv. Math. 213(2), 763–784 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Moore, C., Nauenberg, M.: New Periodic Orbits for the \(n\)-Body Problem. arXiv:math/0511219v1 (2008)

  6. Chen, K.C.: Binary decomposition for planar \(N\)-body problems and symmetric periodic solutions. Arch. Rational Mech. Anal. 170, 247–276 (2003)

    Article  MATH  Google Scholar 

  7. Chenciner, A.: Action minimizing solutions of the Newtonian \(n\)-body problem: from homology to symmetry. In: Proceedings of the ICM 2002, Beijing (2002)

  8. Chenciner, A., Venturelli, A.: Minima de l’intégrale d’action du Problème newtonien de 4 corps de masses égales dans \(\mathbb{R}^3\): orbites “hip-hop”. Cel. Mech. Dyn. Ast. 77, 139–152 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferrario, D., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical \(n\)-body problem. Invent. Math. 155, 305–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Montgomery, R.: The \(n\)-body problem, the braid group and action minimizing periodic solutions. Nonlinearity 11, 363–376 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ouyang, T., Xie, Z.: A new variational method with SPBC and many stable choreographic solutions of the Newtonian 4 body problem, preprint (2013)

  12. Simó, C.: New families of solutions in \(N\)-body problems. In: Proceedings of the Third European Congress of Mathematics, Casacuberta et al. edits, Progress in Mathematics vol. 201, pp. 101–115 (2001)

  13. Terracini, S., Venturelli, A.: Symmetric trajectories for the \(2N\)-body problem with equal masses. Arch. Rational Mech. Anal. 184, 465–493 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Venturelli, A.: Une caracterisation variationelle des solutions de Lagrange du problème plan des trois corps. Comp. Rend. Acad. Sci. Paris, Série I 332, 641–644 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Barutello, V., Ferrario, D. L., Terracini, S.: On the singularities of generalized solutions to \(n\)-body-type problems. Int. Math. Res. Not., rnn 069, 1–78 (2008)

  16. Chenciner, A.: Symmetries and “simple” solutions of the classical \(N\)-body problem. In: Proceedings of the ICMP03 (2003)

  17. Braides, A.: \(\Gamma \)-convergence for Beginners. Oxford University Press, Oxford (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Fusco.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusco, G., Gronchi, G.F. Platonic Polyhedra, Periodic Orbits and Chaotic Motions in the \(N\)-body Problem with Non-Newtonian Forces. J Dyn Diff Equat 26, 817–841 (2014). https://doi.org/10.1007/s10884-014-9401-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9401-2

Keywords

Navigation