Skip to main content
Log in

Existence and Homogenisation of Travelling Waves Bifurcating from Resonances of Reaction–Diffusion Equations in Periodic Media

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The existence of travelling wave type solutions is studied for a scalar reaction diffusion equation in \(\mathbb {R}^2\) with a nonlinearity which depends periodically on the spatial variable. We treat the coefficient of the linear term as a parameter and we formulate the problem as an infinite spatial dynamical system. Using a centre manifold reduction we obtain a finite dimensional dynamical system on the centre manifold with fully degenerate linear part. By phase space analysis and Conley index methods we find conditions on the parameter and nonlinearity for the existence of travelling wave type solutions with particular wave speeds. The analysis provides an approach to the homogenisation problem as the period of the periodic dependence in the nonlinearity tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Afendikov, A., Mielke, A.: Bifurcations of Poiseuille flow between parallel plates: three-dimensional solutions with large spanwise wavelength. Arch. Ration. Mech. Anal. 129, 101–127 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures, AMS Chelsea Publishing, Providence, RI, Corrected reprint of the 1978 original (2011)

  3. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Math. (N.S.) 22, 1–37 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boden, A.: Travelling waves in heterogeneous media. Ph.D. thesis, University of Bath (2012)

  6. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1999)

    MATH  Google Scholar 

  7. Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI (1978)

    MATH  Google Scholar 

  8. Eckmann, J.-P., Wayne, C.E.: Propagating fronts and the center manifold theorem. Commun. Math. Phys. 136, 285–307 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fiedler, B., Scheel, A.: Spatio-temporal dynamics of reaction–diffusion patterns. Trends in Nonlinear Analysis. Springer, Berlin (2003)

    Google Scholar 

  10. Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937)

    Google Scholar 

  11. Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical systems, Universitext. Springer-Verlag London Ltd., London (2011)

    Book  Google Scholar 

  12. Haragus, M., Schneider, G.: Bifurcating fronts for the Taylor–Couette problem in infinite cylinders. Z. Angew. Math. Phys. 50, 120–151 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). Translated from the Russian by G.A. Yosifian

  14. Kirchgässner, K.: Wave-solutions of reversible systems and applications. J. Differ. Equ. 45, 113–127 (1982)

    Article  MATH  Google Scholar 

  15. Kolmogorov, A., Petrovsky, I., Piskunov, N.: Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. Bull. Univ. Etat. Moscow Ser., Int. Math. Mec. Sect. A 1, 1–29 (1937)

    Google Scholar 

  16. Matthies, K., Schneider, G., Uecker, H.: Exponential averaging for traveling wave solutions in rapidly varying periodic media. Math. Nachr. 280, 408–422 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Matthies, K., Wayne, C.E.: Wave pinning in strips. Proc. R. Soc. Edinb. Sect. A 136, 971–995 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  19. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  20. Sandstede, B., Scheel, A.: Defects in oscillatory media: toward a classification. SIAM J. Appl. Dyn. Syst 3, 1–68 (2004)

  21. Schneider, G., Uecker, H.: Existence and stability of modulating pulse solutions in Maxwell’s equations describing nonlinear optics. Z. Angew. Math. Phys. 54, 677–712 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 258. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. Taylor, M.E.: Partial Differential Equations. III. Applied Mathematical Sciences, vol. 117. Springer, New York (1997)

  24. Vanderbauwhede, A., Iooss, G.: Center Manifold Theory in Infinite Dimensions, vol. 1, pp. 125–163. Springer, Berlin (1992)

    Google Scholar 

  25. Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

  26. Xin, J.: An Introduction to Fronts in Random Media. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 5. Springer, New York (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Financial support by EPSRC through DTA funding for Boden is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Matthies.

Appendices

Appendix 1: Calculation of Reduction Map for One Dimensional Centre Manifold

In order to calculate the equation on \(X_c\) up to quadratic order in \(U^c\) we need to calculate all the linear terms and the quadratic term on the \(U_0^-\) component of the reduction map \(\psi \). Thus we need to satisfy

$$\begin{aligned} D_{\left( U_c,\delta \right) }\psi \left( U^c,\delta \right) \left( \begin{array}{c}\pi _cF\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) \\ 0 \end{array}\right) = \mathcal {A}\psi \left( U^c,\delta \right) + \pi _h F\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) \end{aligned}$$
(55)

for these terms. We do this by expanding the reduction map in terms of the eigenfunctions and solving the equation on each eigenfunction component for the relevant terms, thus we write

$$\begin{aligned} \psi \left( U^c,\delta \right) = \psi _0^-\left( U^c,\delta \right) U_0^- + \sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} }\psi _m^\pm \left( U^c,\delta \right) U_m^\pm . \end{aligned}$$

Now if we let \(\psi _0^+\left( U^c,\delta \right) : = u^c_1\) and suppress the arguments of the functions \(\psi _m^\pm \), then we can obtain equations for the projections of \(F\) onto \(X_c\) and \(X_h\)

$$\begin{aligned} \pi _cF\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) =&\quad -\delta \left( \frac{\psi _0^++\psi _0^-}{\lambda _0^+-\lambda _0^-}\right) U_0^+\end{aligned}$$
(56)
$$\begin{aligned}&- \left( \sum _{n,k\in \mathbb {Z}^2}q_2p_n\frac{\left( \psi _k^++\psi _k^-\right) \left( \psi _{-n-k}^++\psi _{-n-k}^-\right) }{\lambda _0^+-\lambda _0^-}\right) U_0^+ \end{aligned}$$
(57)

and

$$\begin{aligned} \pi _hF\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) =&\quad \delta \left( \frac{\psi _0^++\psi _0^-}{\lambda _0^+-\lambda _0^-}\right) U_0^-\\&\quad + \left( \sum _{n,k\in \mathbb {Z}^2}q_2p_n\frac{\left( \psi _k^++\psi _k^-\right) \left( \psi _{-n-k}^++\psi _{-n-k}^-\right) }{\lambda _0^+-\lambda _0^-}\right) U_0^-\\&\quad +\sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} }\mp \Bigg (\delta \left( \frac{\psi _m^++\psi _m^-}{\lambda _m^+-\lambda _m^-}\right) U_m^\pm \\&\quad +\left( \sum _{n,k\in \mathbb {Z}^2}q_2p_n\frac{\left( \psi _k^++\psi _k^-\right) \left( \psi _{m-n-k}^++\psi _{m-n-k}^-\right) }{\lambda _m^+-\lambda _m^-}\right) U_m^\pm \Bigg ); \end{aligned}$$

up to quadratic order in \(U^c\) by substituting this expansion into \(F\).

We now want to calculate the linear terms of the Taylor expansion of \(\psi \). Thus let

$$\begin{aligned} \psi \left( U^c,\delta \right) = \left( L_0^-(\delta )U^c\right) U_0^- + \sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} }\left( L_m^\pm (\delta )U^c\right) U^\pm _m + O\left( \left\| U^c\right\| ^2\right) , \end{aligned}$$

where the functions \(L_m^\pm (\delta ) :X_c\rightarrow \mathbb {C}\) are linear. Thus, if we substitute the equations for \(F\) on \(X_c\) and \(X_h\) into (55) and use the above expansion for \(\psi \), we get that up to linear terms

$$\begin{aligned}&D_{\left( U^c,\delta \right) }\psi \left( U^c,\delta \right) \left( \begin{array}{c}\pi _cF\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) \\ 0 \end{array}\right) \\&\quad = L_0^-(\delta )\left( -\delta \left( \frac{u^c_1+L_0^-(\delta )U^c}{\lambda _0^+-\lambda _0^-}\right) U_0^+\right) U_0^- \\&\qquad + \sum _{m\in \mathbb {Z}\setminus \left\{ 0\right\} }L_m^\pm (\delta )\left( -\delta \left( \frac{u^c_1+L_0^-(\delta )U^c}{\lambda _0^+-\lambda _0^-}\right) U_0^+\right) U_m^\pm + O\left( \left\| U^c\right\| ^2\right) \end{aligned}$$

and

$$\begin{aligned}&\mathcal {A}\psi \left( U^c,\delta \right) + \pi _h F\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) \\&\quad = \left( \lambda _0^-L_0^-(\delta )U^c\right) U_0^- + \sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} }\left( \lambda _m^\pm L_m^\pm (\delta )U^c\right) U^\pm _m\\&\qquad + \delta \left( \frac{u_1^c+L_0^-(\delta )U^c}{\lambda _0^+-\lambda _0^-}\right) U_0^- + \delta \sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} }\mp \left( \frac{L_m^+(\delta )U^c+L_m^-(\delta )U^c}{\lambda _m^+-\lambda _m^-}\right) U_m^\pm \\&\qquad + O\left( \left\| U^c\right\| ^2\right) . \end{aligned}$$

So on the \(U_0^-\) component of (55) we have the equation

$$\begin{aligned} -\delta L_0^-(\delta )\left( \left( \frac{u_1^c+L_0^-(\delta )U^c}{\lambda _0^+-\lambda _0^-}\right) U_0^+\right) = \lambda _0^-\left( L_0^-(\delta )U^c\right) + \delta \left( \frac{u^c_1+L_0^-(\delta )U^c}{\lambda _0^+-\lambda _0^-}\right) . \end{aligned}$$
(58)

Now, as \(X_c = \text {Span}_\mathbb {R}\left\{ U_0^+\right\} \), we can write \(U^c = y U_0^+\) for \(y \in \mathbb {R}\) and \(L_0^-(\delta )\left( yU_0^+\right) := a_0^- y\) for some \(a_0^-\in \mathbb {R}\). Then, since \(\lambda _0^+ = 0\) and \(\lambda _0^- = -c\), the equation on the \(U_0^-\) component (58) becomes

$$\begin{aligned} -\delta a_0^-\left( \frac{y+a_0^-y}{c}\right) =-ca_0^-y + \delta \left( \frac{y+a_0^-y}{c}\right) , \end{aligned}$$

which can be rearranged to get

$$\begin{aligned} \delta \left( 1+a_0^-\right) ^2 = c^2 a_0^-. \end{aligned}$$

Thus we get two possible values for \(a_0^-\)

$$\begin{aligned} a_0^-&= \frac{\left( c^2-2\delta \right) + \sqrt{\left( c^2-2\delta \right) ^2-4\delta ^2}}{2\delta } = \frac{c^2}{\delta } -2 -\frac{2\delta }{c^2} + O(\delta ^2)\text { as }\delta \rightarrow 0\\ \text { or}\\ a_0^-&= \frac{\left( c^2-2\delta \right) - \sqrt{\left( c^2-2\delta \right) ^2-4\delta ^2}}{2\delta } = \frac{2\delta }{c^2} +O(\delta ^2)\text { as }\delta \rightarrow 0; \end{aligned}$$

however if we choose the first of these then the reduction map \(\psi \) would not satisfy the condition

$$\begin{aligned} D_{\left( U^c,\delta \right) }\psi (0,0) = 0. \end{aligned}$$

So we take

$$\begin{aligned} a_0^- {:=} \frac{\left( c^2-2\delta \right) - \sqrt{\left( c^2-2\delta \right) ^2-4\delta ^2}}{2\delta }. \end{aligned}$$

Now on the \(U_m^\pm \) components of (55) for \(m\ne 0\) we have the equation

$$\begin{aligned} -\delta L_m^\pm (\delta )\left( \left( \frac{u_1^c+L_0^-(\delta )U^c}{\lambda _0^+-\lambda _0^-}\right) U_0^+\right) = \lambda _m^\pm \left( L_m^\pm (\delta )U^c\right) \mp \delta \left( \frac{L_m^+(\delta )U_c+L_m^-(\delta )U^c}{\lambda _m^+-\lambda _m^-}\right) ; \end{aligned}$$

which is satisfied if we take \(L_m^\pm =0\). Hence we have determined the linear terms of the reduction map.

Next we want to find the quadratic terms on the \(U_0^-\) component. Thus we let

$$\begin{aligned} \psi \left( U^c,\delta \right) = \left( L_0^-(\delta )U^c + Q_0^-\left( U^c,\delta \right) \right) U_0^- + \sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} }Q_m^\pm \left( U^c,\delta \right) + O\left( \left\| U^c\right\| ^3\right) ; \end{aligned}$$

where \(Q_m^\pm \left( \cdot ,\delta \right) :X_c\rightarrow \mathbb {C}\) are quadratic functions. Then, substituting the equations for \(F\) on \(X_c\) and \(X_h\) into (55) and using the above expansion for \(\psi \) in terms of the linear and quadratic terms, we get that the quadratic terms of

$$\begin{aligned}&D_{\left( U^c,\delta \right) }\psi \left( U^c,\delta \right) \left( \begin{array}{c}\pi _cF\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) \\ 0 \end{array}\right) \\&\quad = L_0^-\left( -\delta \left( \frac{Q_0^-\left( U^c,\delta \right) }{\lambda _0^+-\lambda _0^-}\right) U_0^+ - \frac{q_2p_0}{\lambda _0^+-\lambda _0^-}\left( u_1^c + L_0^-(\delta )U_c\right) ^2U_0^+\right) U_0^-\\&\qquad + D_{U^c} Q_0^-\left( U^c,\delta \right) \left( -\delta \left( \frac{u_1^c+L_0^-(\delta )U_c}{\lambda _0^+-\lambda _0^-}\right) U_0^+\right) U_0^-\\&\qquad +\sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} } D_{U^c}Q_m^\pm \left( U^c,\delta \right) \left( -\delta \left( \frac{u_1^c+L_0^-(\delta )U_c}{\lambda _0^+-\lambda _0^-}\right) U_0^+\right) U_m^\pm \end{aligned}$$

and the quadratic terms of

$$\begin{aligned}&\mathcal {A}\psi \left( U^c,\delta \right) + \pi _h F\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) \\&\quad =\lambda _0^- Q_0^-\left( U^c,\delta \right) U_0^- + \sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} } \lambda _m^\pm Q_m^\pm \left( U^c,\delta \right) U^\pm _m\\&\qquad +\delta \left( \frac{Q_0^-\left( U^c,\delta \right) }{\lambda _0^+-\lambda _0^-}\right) U_0^-+ \frac{q_2p_0}{\lambda _0^+-\lambda _0^-}\left( u_1^c+ L_0^-(\delta )U_c\right) ^2U_0^-\\&\qquad +\sum _{m\in \mathbb {Z}^2\setminus \left\{ 0\right\} }\mp \Bigg ( \delta \left( \frac{Q_m^+\left( U^c,\delta \right) +Q_m^-\left( U^c,\delta \right) }{\lambda _m^+-\lambda _m^-}\right) U_m^\pm + \\&\qquad \quad \frac{q_2p_m}{\lambda _m^+-\lambda _m^-}\left( u_1^c+L_0^-(\delta )U^c\right) ^2U_m^\pm \Bigg ). \end{aligned}$$

Thus on the \(U_0^-\) component of (55) we have the equation

$$\begin{aligned}&L_0^-\left( -\delta \left( \frac{Q_0^-\left( U^c,\delta \right) }{\lambda _0^+-\lambda _0^-}\right) U_0^+ - \frac{q_2p_0}{\lambda _0^+-\lambda _0^-}\left( u_1^c + L_0^-(\delta )U_c\right) ^2U_0^+\right) \nonumber \\&\quad +D_{U^c} Q_0^-\left( U^c,\delta \right) \left( -\delta \left( \frac{u_1^c+L_0^-(\delta )U_c}{\lambda _0^+-\lambda _0^-}\right) U_0^+\right) \nonumber \\&\qquad = \lambda _0^-Q^-_0\left( U^c,\delta \right) +\delta \left( \frac{Q_0^-\left( U^c,\delta \right) }{\lambda _0^+-\lambda _0^-}\right) + \frac{q_2p_0}{\lambda _0^+-\lambda _0^-}\left( u_1^c+ L_0^-(\delta )U_c\right) ^2 \end{aligned}$$
(59)

and, since \(X_c =\text {Span}_\mathbb {R}\left\{ U_0^+\right\} \), we can let \(U^c = y U_0^+\), \(L_0^-(\delta )\left( yU_0^+\right) = a_0^- y\) and \(Q_0^-\left( yU_0^+,\delta \right) = b_0^- y^2\) for some \(b_0^-\in \mathbb {R}\). Thus the equation on the \(U_0^-\) component (59) becomes

$$\begin{aligned}&-a_0^-\left( \frac{\delta b_0^-y^2 + q_2p_0\left( y+a_0^-y\right) ^2}{c}\right) -2b_0^-y\left( \delta \frac{\left( y+a_0^-y\right) }{c}\right) \\&\quad = -cb_0^-y^2 + \delta \frac{b_0^-y^2}{c} + \frac{q_2p_0}{c}\left( y+a_0^-y\right) ^2; \end{aligned}$$

rearranging we get

$$\begin{aligned} \left( c^2 -3 \delta \left( 1+a_0^-\right) \right) b_0^- = q_2p_0\left( 1+a_0^-\right) ^3. \end{aligned}$$

Hence we have

$$\begin{aligned} b_0^- = \frac{q_2p_0\left( 1+a_0^-\right) ^3}{c^2 -3 \delta \left( 1+a_0^-\right) }. \end{aligned}$$

Thus we have determined the terms of the reduction map necessary to calculate the equation on the \(X_c\) up to quadratic order in \(U^c\).

Appendix 2: Calculation of Reduction Map for Two Dimensional Centre Manifold

In order to calculate the equation on \(X_c\) up to quadratic order in \(U^c\) we will need to calculate all the linear terms and the quadratic terms on the \(U_\eta ^+\) and \(U_{-\eta }^+\) components of the reduction map. Thus we need to satisfy the equation

$$\begin{aligned} D_{\left( U^c,\delta \right) }\psi \left( U^c,\delta \right) \left( \begin{array}{c}\pi _cF\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) \\ 0 \end{array}\right) = \mathcal {A}\psi \left( U^c,\delta \right) + \pi _h F\left( U^c \!+\! \psi \left( U^c,\delta \right) ,\delta \right) ; \end{aligned}$$
(60)

for these terms. We do this by expanding the reduction map in terms of the eigenfunctions and solving the equation on each eigenfunction component. Thus we let

$$\begin{aligned} \psi \left( U^c,\delta \right) = \psi _\eta ^-\left( U^c,\delta \right) U_\eta ^- + \psi _{-\eta }^-\left( U^c,\delta \right) U_{-\eta }^- + \sum _{m\in \mathbb {Z}^2\setminus \left\{ \pm \eta \right\} }\psi _m^\pm \left( U^c,\delta \right) U^\pm _m. \end{aligned}$$

Now if we let \(U_c = zU_\eta ^++\overline{z}U_{-\eta }^+\) and, for notational convenience, set \(\psi _\eta ^+\left( U^c,\delta \right) :=z\) and \(\psi _{-\eta }^+\left( U^c,\delta \right) :=\overline{z}\). Then, suppressing the arguments of the functions \(\psi _m^\pm \) and substitute the above expansion into \(F\), we get equations for the projections of \(F\) onto \(X_c\) and \(X_h\),

$$\begin{aligned} \pi _c F\left( U^c+\psi \left( U^c,\delta \right) ,\delta \right) =&\quad -\delta \left( \frac{\psi _\eta ^++\psi _\eta ^-}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^+ -\delta \left( \frac{\psi _{-\eta }^++\psi _{-\eta }^-}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) U_{-\eta }^+\nonumber \\&\quad - \sum _{n,k\in \mathbb {Z}^2}q_2p_{\eta + n} \frac{\left( \psi _k^++\psi _k^-\right) \left( \psi ^+_{-n-k}+\psi _{-n-k}^-\right) }{\lambda _\eta ^+-\lambda _\eta ^-}U_\eta ^+\nonumber \\&\quad -\sum _{n,k\in \mathbb {Z}^2} q_2p_{-\eta + n} \frac{\left( \psi _k^++\psi _k^-\right) \left( \psi ^+_{-n-k}+\psi _{-n-k}^-\right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}U_{-\eta }^+\quad \end{aligned}$$
(61)

and

$$\begin{aligned} \pi _h F\left( U^c +\psi \left( U^c,\delta \right) ,\delta \right) =&\quad \delta \left( \frac{\psi _\eta ^++\psi _\eta ^-}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^-+\delta \left( \frac{\psi _{-\eta }^++\psi _{-\eta }^-}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) U_{-\eta }^-\nonumber \\&\quad + \sum _{n,k\in \mathbb {Z}^2}q_2p_{\eta + n} \frac{\left( \psi _k^++\psi _k^-\right) \left( \psi ^+_{-n-k}+\psi _{-n-k}^-\right) }{\lambda _\eta ^+-\lambda _\eta ^-}U_\eta ^-\nonumber \\&\quad +\sum _{n,k\in \mathbb {Z}^2} q_2p_{-\eta + n} \frac{\left( \psi _k^++\psi _k^-\right) \left( \psi ^+_{-n-k}+\psi _{-n-k}^-\right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}U_{-\eta }^-\nonumber \\&\quad + \sum _{m\in \mathbb {Z}^2 \setminus \left\{ \pm \eta \right\} } \mp \Bigg (\delta \left( \frac{\psi _m^++\psi _m^-}{\lambda _m^+-\lambda _m^-}\right) U_m^\pm +\nonumber \\&\quad \sum _{n,k\in \mathbb {Z}^2}q_2p_{m+n} \frac{\left( \psi _k^++\psi _k^-\right) \left( \psi _{-k-n}^++\psi _{-k-n}^-\right) }{\lambda _m^+-\lambda _m^-}U_m^\pm \Bigg ) \end{aligned}$$
(62)

up to quadratic order in \(U^c\).

Now we start finding the terms of the reduction map \(\psi \) by working out the its linear terms, so we let

$$\begin{aligned} \psi \left( U^c,\delta \right) = \left( L_\eta ^-(\delta )U^c\right) U_\eta ^- + \left( L_{-\eta }^-(\delta )U^c\right) U_{-\eta }^- +\sum _{m\in \mathbb {Z}^2\setminus \left\{ \pm \eta \right\} }\left( L_m^\pm (\delta )U^c\right) U_m^\pm +O\left( \left\| U^c\right\| ^2\right) ; \end{aligned}$$

where the functions \(L_m^\pm (\delta ):X_c\rightarrow \mathbb {C}\) are linear. Now if we let \(U^c = z U_\eta ^++\overline{z}U_{-\eta }^+\) for \(z\in \mathbb {C}\). Then using the equations for the projections of \(F\) onto \(X_c\) and \(X_h\) with the above expansion some calculation shows that up to linear terms in \(U^c\)

$$\begin{aligned}&D_{\left( U^c,\delta \right) }\psi \left( U^c,\delta \right) \left( \begin{array}{c}\pi _c F\left( U^c +\psi \left( U^c,\delta \right) ,\delta \right) \\ 0\end{array}\right) \\&\quad = L_\eta ^-(\delta )\left( -\delta \left( \frac{z+L_\eta ^-(\delta )U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^+-\delta \left( \frac{\overline{z}+L_{-\eta }^-(\delta )U^c}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) U_{-\eta }^+\right) U_\eta ^-\\&\qquad + L_{-\eta }^-(\delta )\left( -\delta \left( \frac{z+L_\eta ^-(\delta )U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^+-\delta \left( \frac{\overline{z}+L_{-\eta }^-(\delta )U^c}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) U_{-\eta }^+\right) U_{-\eta }^-\\&\qquad +\sum _{m\in \mathbb {Z}^2\setminus \left\{ \pm \eta \right\} } L_m^\pm (\delta )\left( -\delta \left( \frac{z+L_\eta ^-(\delta )U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^+-\delta \left( \frac{\overline{z}+L_{-\eta }^-(\delta )U^c}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) U_{-\eta }^+\right) U_m^\pm \end{aligned}$$

and

$$\begin{aligned}&\mathcal {A}\psi \left( U^c,\delta \right) +\pi _hF\left( U^c+\psi \left( U^c,\delta \right) ,\delta \right) \\&\quad = \left( \lambda _\eta ^-L_\eta ^-(\delta )U^c\right) U_\eta ^- + \left( \lambda _{-\eta }^-L_{-\eta }^-(\delta )U^c\right) U_{-\eta }^- +\sum _{m\in \mathbb {Z}^2\setminus \left\{ \pm \eta \right\} } \left( \lambda _m^\pm L_m^\pm (\delta ) U^c\right) U_m^\pm \\&\qquad +\delta \left( \frac{z+L_\eta ^-(\delta )U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^- + \delta \left( \frac{\overline{z}+L_{-\eta }^-(\delta )U^c}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) U_{-\eta }^-\\&\qquad + \delta \sum _{m\in \mathbb {Z}^2 \setminus \left\{ \pm \eta \right\} }\mp \left( \frac{L_m^+(\delta )U^c+L_m^-(\delta )U^c}{\lambda _m^+-\lambda _m^-}\right) U_m^\pm . \end{aligned}$$

Thus on the \(U_\eta ^-\) and \(U_{-\eta }^-\) components of (55) we have the equations

$$\begin{aligned}&L_\eta ^-(\delta )\left( -\delta \left( \frac{z+L_\eta ^-(\delta )U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^+-\delta \left( \frac{\overline{z}+L_{-\eta }^-(\delta )U^c}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) U_{-\eta }^+\right) \\&\quad = \lambda _\eta ^-L_\eta ^-(\delta )U^c +\delta \left( \frac{z+L_\eta ^-(\delta )U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) \end{aligned}$$

and

$$\begin{aligned}&L_{-\eta }^-(\delta )\left( -\delta \left( \frac{z+L_\eta ^-(\delta )U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^+-\delta \left( \frac{\overline{z}+L_{-\eta }^-(\delta )U^c}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) U_{-\eta }^+\right) \\&\quad = \lambda _{-\eta }^-L_{-\eta }^-(\delta )U^c +\delta \left( \frac{z+L_{-\eta }^-(\delta )U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) . \end{aligned}$$

However, since \(\psi \) maps into \(X_h\subset X\), we have that \(L_\eta ^-(\delta ) =\overline{L_{-\eta }^-(\delta )}\) and it follows that the two equation above are complex conjugates of each other.

Now, since \(U^c = z U_\eta ^+ +\overline{z}U_{-\eta }^+\), we have that \(L_\eta ^-(\delta )\left( z U_\eta ^+ +\overline{z}U_{-\eta }^+\right) = \alpha _\eta ^- z + \beta _\eta ^- \overline{z}\) for some \(\alpha _\eta ^-,\beta _\eta ^- \in \mathbb {C}\) and we can express the equation on \(U_\eta ^-\) in terms of \(z\) to get,

$$\begin{aligned}&-\delta \alpha _\eta ^- \left( \frac{z + \left( \alpha _\eta ^-z + \beta _\eta ^- \overline{z}\right) }{\lambda _\eta ^+-\lambda _\eta ^-}\right) - \delta \beta _\eta ^-\left( \frac{\overline{z}+\left( \overline{\beta _\eta ^-}z + \overline{\alpha _\eta ^-} \overline{z}\right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) \\&\quad = \lambda _\eta ^-\left( \alpha _\eta ^-z+\beta _\eta ^-\overline{z}\right) + \delta \left( \frac{z+ \left( \alpha _\eta ^-z +\beta _\eta ^- \overline{z}\right) }{\lambda _\eta ^+-\lambda _\eta ^-}\right) . \end{aligned}$$

From this equation we can work out the coefficients \(\alpha _\eta ^-\) and \(\beta _\eta ^-\) by equating the coefficients of the \(z\) and \(\overline{z}\) terms,

$$\begin{aligned} z:&-\delta \left( \frac{\alpha _\eta ^-\left( 1+\alpha _\eta ^-\right) }{\lambda _\eta ^+-\lambda _\eta ^-} + \frac{\left| \beta _\eta ^-\right| ^2}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) = \lambda _\eta ^-\alpha _\eta ^- + \delta \left( \frac{1+\alpha _\eta ^-}{\lambda _\eta ^+-\lambda _\eta ^-}\right) \\ \overline{z}:&-\delta \left( \frac{\alpha _\eta ^-\beta _\eta ^-}{\lambda _\eta ^+-\lambda _\eta ^-}+\frac{\beta _\eta ^-\left( 1+\overline{\alpha _\eta ^-}\right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) = \lambda _\eta ^-\beta _\eta ^- + \delta \left( \frac{\beta _\eta ^-}{\lambda _\eta ^+-\lambda _\eta ^-}\right) . \end{aligned}$$

Now the \(\overline{z}\) equation implies that \(\beta _\eta ^- = 0\), so rearranging the \(z\) equation we get the quadratic equation

$$\begin{aligned} \delta \left( \alpha _\eta ^-\right) ^2 +\left( 2\delta +\lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) \right) \alpha _\eta ^-+\delta = 0. \end{aligned}$$

So we have two possible values for \(\alpha _\eta ^-\) namely,

$$\begin{aligned} \alpha _\eta ^-&= \frac{-\left( 2\delta +\lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) \right) +\sqrt{\left( 2\delta +\lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) \right) ^2-4\delta ^2}}{2\delta }\\&= O(\delta )\text { as }\delta \rightarrow 0 \end{aligned}$$

or

$$\begin{aligned} \alpha _\eta ^-&=\frac{-\left( 2\delta +\lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) \right) -\sqrt{\left( 2\delta +\lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) \right) ^2-4\delta ^2}}{2\delta }\\&= -\frac{\lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) }{2\delta } - 2 +O(\delta )\text { as }\delta \rightarrow 0. \end{aligned}$$

However if we choose the second of these values then the reduction map would not satisfy the condition,

$$\begin{aligned} D_{\left( U^c,\delta \right) }\psi (0,0) = 0. \end{aligned}$$

Thus we choose the first of the values given above and hence we have determined \(L_\eta ^-(\delta )\) and \(L_{-\eta }^-(\delta )\), since \(L_{-\eta }^-(\delta )\) is the complex conjugate of \(L_\eta ^-(\delta )\).

Now on the \(U^\pm _m\) component of Eq. (55) for \(m \ne \pm \eta \) we have the equation,

$$\begin{aligned}&-\delta L_m^\pm (\delta )\left( \frac{z+L_\eta ^-(\delta )U_c}{\lambda _\eta ^+-\lambda _\eta ^-}U_\eta ^+ + \frac{\overline{z}+L_{-\eta }^-(\delta )U^c}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}U_{-\eta }^+\right) \\&\quad = \lambda _m^\pm L_m^\pm (\delta ) U^c \mp \delta \left( \frac{L_m^+(\delta )U^c+L_m^-(\delta )U^c}{\lambda _m^+-\lambda _m^-}\right) ; \end{aligned}$$

which is satisfied if we choose \(L_m^\pm (\delta ) = 0\) for all \(m \ne \pm \eta \). Thus we have determined all the linear terms of the reduction map, we summaries this information below;

$$\begin{aligned} L_\eta ^-(\delta )\left( zU_\eta ^+\overline{z}U_\eta ^+\right)&= \alpha _\eta ^- z\\ L_{-\eta }^-(\delta )\left( zU_\eta ^+\overline{z}U_\eta ^+\right)&= \overline{\alpha _\eta ^-}\overline{z}\\ L_m^\pm (\delta )\left( zU_\eta ^+\overline{z}U_\eta ^+\right)&= 0 \text { for all }m\ne \pm \eta . \end{aligned}$$

Hence it just remains to determine the quadratic terms on the \(U_\eta ^-\) and \(U_{-\eta }^-\) components. Thus we let

$$\begin{aligned} \psi \left( U^c,\delta \right) \,&=\,\left( L_\eta ^-(\delta )U^c+Q_\eta ^-\left( U^c,\delta \right) \right) U_{-\eta }^-+\left( L_{-\eta }^-(\delta )U^c+Q_{-\eta }^-\left( U^c,\delta \right) \right) U_{-\eta }^- \\&\quad + \sum _{m\in \mathbb {Z}^2\setminus \left\{ \pm \eta \right\} }Q_m^\pm \left( U^c,\delta \right) U_m^\pm +O\left( \left\| U^c\right\| ^3\right) ; \end{aligned}$$

where \(Q_m^\pm \left( \cdot ,\delta \right) :X_c\rightarrow \delta \) are quadratic functions. Then, if we let \(U^c = zU_\eta ^-+\overline{z}U_{-\eta }^+\) and use the equation for the projections of \(F\) onto \(X_c\) and \(X_h\) with the above expansion, we get that the quadratic terms in \(U^c\) of

$$\begin{aligned}&D_{(U^c,\delta )}\psi \left( U^c,\delta \right) \left( \begin{array}{c}\pi _cF\left( U^c + \psi \left( U^c,\delta \right) ,\delta \right) \\ 0 \end{array}\right) \\&\quad = \left( L_\eta ^-(\delta )V\right) U_\eta ^-+\left( L_{-\eta }^-(\delta )V\right) U^-_{-\eta } + \left( D_{U^c}Q_\eta ^-\left( U^c,\delta \right) W\right) U_\eta ^- \\&\qquad + \left( D_{U^c}Q_{-\eta }^-\left( U^c,\delta \right) W\right) U_{-\eta }^-+\sum _{m\in \mathbb {Z}^2\setminus \left\{ \pm \eta \right\} }\left( D_{U^c}Q_m^\pm \left( U^c,\delta \right) W\right) U_m^\pm ; \end{aligned}$$

where

$$\begin{aligned} V =&\,-\frac{\delta Q_\eta ^-\left( U^c,\delta \right) }{\lambda _\eta ^+-\lambda _\eta ^-}U_\eta ^+-\frac{\delta Q_{-\eta }^-\left( U^c,\delta \right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}U_{-\eta }^+\\&-\frac{q_2\left( p_{-\eta }\left( z+L_\eta ^-(\delta )U^c\right) ^2+2p_\eta \left| z+L_\eta ^-(\delta )U^c\right| ^2+p_{3\eta }\left( \overline{z}+L_{-\eta }^-(\delta )U^c\right) ^2\right) }{\lambda _\eta ^+-\lambda _\eta ^-}U_\eta ^+\\&- \frac{q_2\left( p_{-3\eta }\left( z+L_\eta ^-(\delta )U^c\right) ^2+2p_{-\eta }\left| z+L_\eta ^-(\delta )U^c\right| ^2+p_{\eta }\left( \overline{z}+L_{-\eta }^-(\delta )U^c\right) ^2\right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}U_{-\eta }^+ \end{aligned}$$

and

$$\begin{aligned} W = -\delta \left( \frac{z+L_\eta ^-U^c}{\lambda _\eta ^+-\lambda _\eta ^-}\right) U_\eta ^+ -\delta \left( \frac{\overline{z}+L_{-\eta }^-U^c}{\lambda _{-\eta }^+-\lambda _{-\eta }}\right) U_{-\eta }^+, \end{aligned}$$

and on the other hand using the same method we get that the quadratic terms in \(U^c\) of

$$\begin{aligned}&\mathcal {A}\psi \left( U^c,\delta \right) +\pi _h F\left( U^c+\psi \left( U^c,\delta \right) ,\delta \right) \\&\quad = \left( \lambda _\eta ^-Q_\eta ^-\left( U^c,\delta \right) \right) U_\eta ^-+\left( \lambda _{-\eta }^-Q_{-\eta }^-\left( U^c,\delta \right) \right) U_{-\eta }^-+\sum _{m\in \mathbb {Z}^2\setminus \left\{ \pm \eta \right\} }\left( \lambda _m^\pm Q_m^pm\left( U^c,\delta \right) \right) U_m^\pm \\&\qquad + \tilde{V} + \sum _{m\in \mathbb {Z}^2\setminus \left\{ \pm \eta \right\} }\mp \Bigg (\delta \left( \frac{Q_m^+\left( U^c,\delta \right) +Q_m^-\left( U^c,\delta \right) }{\lambda _m^+-\lambda _m^-}\right) U_m^\pm \\&\qquad +q_2\left( \frac{p_{m-2\eta }\left( z+L_\eta ^-(\delta )U^c\right) ^2+p_m\left| z+L_\eta ^-(\delta )U^c\right| ^2 +p_{m+2\eta }\left( \overline{z}+L_{-\eta }^-(\delta )U^c\right) ^2}{\lambda _m^+-\lambda _m^-}\right) U_m^\pm \Bigg ); \end{aligned}$$

where

$$\begin{aligned} \tilde{V}\,&=\,\frac{\delta Q_\eta ^-\left( U^c,\delta \right) }{\lambda _\eta ^+-\lambda _\eta ^-}U_\eta ^-+\frac{\delta Q_{-\eta }^-\left( U^c,\delta \right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}U_{-\eta }^-\\&\quad +\frac{q_2\left( p_{-\eta }\left( z+L_\eta ^-(\delta )U^c\right) ^2+2p_\eta \left| z+L_\eta ^-(\delta )U^c\right| ^2+p_{3\eta }\left( \overline{z}+L_{-\eta }^-(\delta ) U^c\right) ^2\right) }{\lambda _\eta ^+-\lambda _\eta ^-}U_\eta ^-\\&\quad + \frac{q_2\left( p_{-3\eta }\left( z+L_\eta ^-(\delta )U^c\right) ^2+2p_{-\eta }\left| z+L_\eta ^-(\delta ) U^c\right| ^2+p_{\eta }\left( \overline{z}+L_{-\eta }^-(\delta )U^c\right) ^2\right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}U_{-\eta }^-. \end{aligned}$$

Now, as we only want to workout \(Q_\eta ^-\) and \(Q_{-\eta }^-\) we can just look at the equation on the \(U_\eta ^-\) component, as \(\overline{Q_\eta ^-} = Q_{-\eta }^-\). The equation on the \(U_\eta ^-\) component is

$$\begin{aligned}&L_\eta ^-(\delta )V + D_{U^c}Q_\eta ^-\left( U^c,\delta \right) W \\&\quad = \lambda _\eta ^- Q_\eta ^-\left( U^c,\delta \right) + \frac{\delta Q_\eta ^-\left( U^c,\delta \right) }{\lambda _\eta ^+-\lambda _\eta ^-}\\&\qquad +\frac{q_2\left( p_{-\eta }\left( z+L_\eta ^-(\delta )U^c\right) ^2+2p_\eta \left| z+L_\eta ^-(\delta )U^c\right| ^2+p_{3\eta }\left( \overline{z}+L_{-\eta }^-(\delta ) U^c\right) ^2\right) }{\lambda _\eta ^+-\lambda _\eta ^-}. \end{aligned}$$

Now we know that \(L_\eta ^-(\delta )\left( zU_\eta ^++\overline{z}U_{-\eta }^+\right) = \alpha _\eta ^- z\) and we can write \(Q_\eta ^-\left( zU_\eta ^++\overline{z}U_{-\eta }^+\right) = \gamma _\eta ^-z^2 + 2\zeta _\eta ^-\left| z\right| ^2 + \sigma _\eta ^- \overline{z}^2\) for some \(\gamma _\eta ^-,\zeta _\eta ^-,\sigma _\eta ^- \in \mathbb {C}\). So therefore the above equation can be written in terms of \(z\) as

$$\begin{aligned}&-\frac{\alpha _\eta ^-}{\lambda _\eta ^+-\lambda _\eta ^-}\bigg (\delta \left( \gamma _\eta ^-z^2+2\zeta _\eta ^-\left| z\right| ^2+\sigma _\eta ^-\overline{z}^2\right) +q_2\bigg (p_{-\eta }\left( 1+\alpha _\eta ^-\right) ^2z^2+2p_\eta \left| 1+\alpha _\eta ^-\right| ^2\left| z\right| ^2\\&\quad +p_{3\eta }\left( 1+\overline{\alpha _\eta ^-}\right) ^2\overline{z}^2\bigg )\bigg ) \!-\!2\delta \! \left( \frac{\left( \gamma _\eta ^-z+\zeta _\eta ^-\overline{z}\right) \left( 1+\alpha _\eta ^-\right) z}{\lambda _\eta ^+-\lambda _\eta ^-}+\frac{\left( \zeta _\eta ^-z+\sigma _\eta ^-\overline{z}\right) \left( 1+\overline{\alpha _\eta ^-}\right) \overline{z}}{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) \\&\qquad = \lambda _\eta ^-\left( \gamma _\eta ^-z^2+2\zeta _\eta ^-\left| z\right| ^2+\sigma _\eta ^-\overline{z}^2\right) + \frac{1}{\lambda _\eta ^+-\lambda _\eta ^-}\bigg (\delta \left( \gamma _\eta ^-z^2+2\zeta _\eta ^-\left| z\right| ^2 +\sigma _\eta ^-\overline{z}^2\right) \\&\qquad \quad + q_2\left( p_{-\eta }\left( 1+\alpha _\eta ^-\right) ^2z^2+2p_\eta \left| 1+\alpha _\eta ^-\right| ^2\left| z\right| ^2 +p_{3\eta }\left( 1+\overline{\alpha _\eta ^-}\right) ^2\overline{z}^2 \right) \bigg ), \end{aligned}$$

and if we now equate the coefficients of the \(z^2\), \(\left| z\right| ^2\) and \(\overline{z}^2\) terms and rearrange we get the following three equations.

$$\begin{aligned} z^2:&\quad \left( \lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) +3\delta \left( 1+\alpha _\eta ^-\right) \right) \gamma _\eta ^- = -q_2p_{-\eta }\left( 1+\alpha _\eta ^-\right) ^3\\ \left| z\right| ^2:&\quad \left( \lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) +2\delta \left( 1+\alpha _\eta ^-\right) +\delta \frac{\left( 1+\overline{\alpha _\eta ^-}\right) \left( \lambda _\eta ^+-\lambda _\eta ^-\right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) \zeta _\eta ^- \\&\quad =-q_2p_\eta \left( 1+\alpha _\eta ^-\right) ^2\left( 1+\overline{\alpha _\eta ^-}\right) \\ \overline{z}^2:&\quad \left( \lambda _\eta ^-\left( \lambda _\eta ^+-\lambda _\eta ^-\right) +\delta \left( 1+\alpha _\eta ^-\right) +2\delta \frac{\left( 1+\overline{\alpha _\eta ^-}\right) \left( \lambda _\eta ^+-\lambda _\eta ^-\right) }{\lambda _{-\eta }^+-\lambda _{-\eta }^-}\right) \sigma _\eta ^- \\&\quad = -q_2 p_{3\eta }\left( 1+\alpha _\eta ^-\right) \left( 1+\overline{\alpha _\eta ^-}\right) ^2 \end{aligned}$$

These three equations determine \(\gamma _\eta ^-\), \(\zeta _\eta ^-\) and \(\sigma _\eta ^-\) and thus we have determined \(Q_\eta ^-\left( U^c,\delta \right) \) and \(Q_{-\eta }^-\left( U^c,\delta \right) \) to be

$$\begin{aligned} Q_\eta ^-\left( zU_\eta ^++\overline{z}U_{-\eta }^+,\delta \right)&= \gamma _\eta ^-z^2 +2\zeta _\eta ^- \left| z\right| ^2 +\sigma _\eta ^-\overline{z}^2\\ Q_{-\eta }^-\left( zU_\eta ^++\overline{z}U_{-\eta }^+,\delta \right)&= \overline{\sigma _\eta ^-} z^2 +2\overline{\zeta _\eta ^-} \left| z\right| ^2+\overline{\gamma _\eta ^-} \overline{z}^2. \end{aligned}$$

Thus we have determined the terms of the reduction map needed to calculate the ordinary differential equation on \(X_c\times \mathbb {R}\) up to quadratic order in \(U^c\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boden, A., Matthies, K. Existence and Homogenisation of Travelling Waves Bifurcating from Resonances of Reaction–Diffusion Equations in Periodic Media. J Dyn Diff Equat 26, 405–459 (2014). https://doi.org/10.1007/s10884-014-9398-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9398-6

Keywords

Navigation