Skip to main content
Log in

Principal Solutions at Infinity of Given Ranks for Nonoscillatory Linear Hamiltonian Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study the existence and properties of the principal solutions at infinity of nonoscillatory linear Hamiltonian systems without any controllability assumption. As our main results we prove that the principal solutions can be classified according to the rank of their first component and that the principal solutions exist for any rank in the range between explicitly given minimal and maximal values. The minimal rank then corresponds to the minimal principal solution at infinity introduced by the authors in their previous paper, while the maximal rank corresponds to the principal solution at infinity developed by W. T. Reid, P. Hartman or W. A. Coppel. We also derive a classification of the principal solutions, which have eventually the same image. The proofs are based on a detailed analysis of conjoined bases with a given rank and their construction from the minimal conjoined bases. We illustrate our new theory by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlbrandt, C.D.: Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals. Rocky Mn. J. Math. 2, 169–182 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernstein, D.S.: Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  3. Campbell, S. L., Meyer, C. D.: Generalized Inverses of Linear Transformations Reprint of the: corrected reprint of the 1979 original, Classics in Applied Mathematics, vol. 56. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1991). 2009

  4. Clark, S., Gesztesy, F., Nichols, R.: Principal solutions revisited preprint (2014), arxiv:1401.1285v2

  5. Coppel, W.A.: Disconjugacy Lecture Notes in Mathematics. Springer, Berlin (1971)

    Google Scholar 

  6. Cox, D.A.: Primes of the form \(x^2+ny^2\). Fermat, class field theory and complex multiplication. Wiley, New York (1989)

    Google Scholar 

  7. Došlý, O.: Riccati matrix differential equation and classification of disconjugate differential systems. Arch. Math. (Brno) 23(4), 231–242 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Došlý, O.: Principal solutions and transformations of linear Hamiltonian systems. Arch. Math. (Brno) 28, 113–120 (1992)

    MATH  MathSciNet  Google Scholar 

  9. Došlý, O.: Oscillation criteria for self-adjoint linear differential equations. Math. Nachr. 166, 141–153 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Došlý, O.: Nehari-type oscillation criteria for self-adjoint linear differential equations. J. Math. Anal. Appl. 182(1), 69–89 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Došlý, O., Komenda, J.: Conjugacy criteria for self-adjoint linear differential equations. Arch. Math. (Brno) 31, 217–238 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Fabbri, R., Johnson, R., Novo, S., Núñez, C.: Some remarks concerning weakly disconjugate linear Hamiltonian systems. J. Math. Anal. Appl. 380(2), 853–864 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  14. Hinton, D.B.: Principal solutions of positive linear Hamiltonian systems. J. Aust. Math. Soc. 22 (Series A), 411–420 (1976)

  15. Johnson, R., Novo, S., Núñez, C., Obaya, R.: Uniform weak disconjugacy and principal solutions for linear Hamiltonian systems. In: Proceedings of the International Conference on Delay Differential and Difference Equations and Applications (Balatonfuered, Hungary, 2013), Springer, Berlin, 2014

  16. Johnson, R., Núñez, C., Obaya, R.: Dynamical methods for linear Hamiltonian systems with applications to control processes. J. Dyn. Differ. Equ. 25(3), 679–713 (2013)

    Article  MATH  Google Scholar 

  17. Kratz, W.: Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin (1995)

    MATH  Google Scholar 

  18. Kratz, W.: Definiteness of quadratic functionals. Analysis 23(2), 163–183 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kratz, W., Šimon Hilscher, R.: Rayleigh principle for linear Hamiltonian systems without controllability. ESAIM Control Optim. Calc. Var. 18(2), 501–519 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mac Lane, S., Birkhoff, G.: Algebra Second edition. Macmillan Inc, New York. Collier-Macmillan Publishers, London (1979)

    Google Scholar 

  21. Rasmussen, C.H.: Oscillation and asymptotic behaviour of systems of ordinary linear differential equations. Trans. Am. Math. Soc. 256, 1–48 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Reid, W.T.: Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems. Pac. J. Math. 13, 665–685 (1963)

    Article  MATH  Google Scholar 

  23. Reid, W.T.: Principal solutions of nonoscillatory linear differential systems. J. Math. Anal. Appl. 9, 397–423 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  24. Reid, W.T.: Ordinary Differential Equations. Wiley, New York (1971)

    MATH  Google Scholar 

  25. R\(\mathring{{\rm u}}\)žičková, V.: Discrete Symplectic Systems and Definiteness of Quadratic Functionals PhD dissertation, Masaryk University, Brno, 2006

  26. Šepitka, P., Šimon Hilscher, R.: Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems. J. Dyn. Differ. Equ. 26(1), 57–91 (2014)

    Article  MATH  Google Scholar 

  27. Šimon Hilscher, R.: Sturmian theory for linear Hamiltonian systems without controllability. Math. Nachr. 284(7), 831–843 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Šimon Hilscher, R.: On general Sturmian theory for abnormal linear Hamiltonian systems. In: Dynamical Systems, Differential Equations and Applications. In: Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden, 2010), Feng, W., Feng, Z., Grasselli, M., Ibragimov, A. Lu, X., Siegmund, S., Voigt, J. (eds.) Discrete Contin. Dynam. Systems, Suppl. 2011, pp. 684–691, American Institute of Mathematical Sciences (AIMS), Springfield, MO (2011)

  29. Šimon Hilscher, R., Zeidan, V.: Picone type identities and definiteness of quadratic functionals on time scales. Appl. Math. Comput. 215(7), 2425–2437 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Šimon Hilscher, R., Zemánek, P.: Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval. Math. Bohem. 135(2), 209–222 (2010)

    MATH  MathSciNet  Google Scholar 

  31. Wahrheit, M.: Eigenvalue problems and oscillation of linear Hamiltonian systems. Int. J. Differ. Equ. 2(2), 221–244 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation under Grant P201/10/1032 and by Grant MUNI/A/0821/2013 of Masaryk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Šimon Hilscher.

Appendix 1: Auxiliary Results About Orthogonal Projectors

Appendix 1: Auxiliary Results About Orthogonal Projectors

In this section we present some results from matrix analysis, in particular about orthogonal projectors. We also derive a representation of the set \({\mathcal B}(P_{\!**},P_{\!*},P)\) introduced in (2.2).

Lemma 9.1

Let \({P_{\!*}}\in {\mathbb R}^{n\times n}\) be an orthogonal projector and \(p_*:=\mathrm{rank} \, {P_{\!*}}\). Furthermore, let \({V_{\!*}}\in {\mathbb R}^{n\times n}\) be the corresponding orthogonal matrix from (2.1), i.e.

$$\begin{aligned} {P_{\!*}}={V_{\!*}}\ \mathrm{diag}\{I_{p_*},\,0_{n-p_*}\}\,{V_{\!*}}^T. \end{aligned}$$
(9.1)

Let \(p\in {\mathbb N}\) satisfy \(p_*\le p \le n\). Then a matrix \(P\in {\mathbb R}^{n\times n}\) is an orthogonal projector with

$$\begin{aligned} \mathrm{Im} \, {P_{\!*}}\subseteq \mathrm{Im} \, P\quad \text {and} \quad \mathrm{rank} \, P=p \end{aligned}$$
(9.2)

if and only if \(P\) has the form

$$\begin{aligned} P={V_{\!*}}\ \mathrm{diag}\{I_{p_*},\,{R_{*}}\}\,{V_{\!*}}^T, \end{aligned}$$
(9.3)

where \({R_{*}}\in {\mathbb R}^{(n-p_*)\times (n-p_*)}\) is an orthogonal projector with rank equal to \(p-p_*\).

Proof

It is easy to see that every matrix \(P\) of the form (9.3) is symmetric and idempotent (i.e., it is an orthogonal projector) and (9.2) holds. Conversely, suppose that \(P\in {\mathbb R}^{n\times n}\) is an orthogonal projector satisfying (9.2). Then we may write

$$\begin{aligned} P={V_{\!*}}\left( \begin{matrix} K_* &{} L_*\\ L_*^T &{} {R_{*}} \end{matrix}\right) {V_{\!*}}^T, \end{aligned}$$
(9.4)

where \(K_*\in {\mathbb R}^{p_*\times p_*}\) is symmetric, \(L_*\in {\mathbb R}^{p_*\times (n-p_*)}\), and \({R_{*}}\in {\mathbb R}^{(n-p_*)\times (n-p_*)}\) is symmetric. The first condition in (9.2) is equivalent with \(P{P_{\!*}}={P_{\!*}}\), from which we get by using the representations in (9.1) and (9.4) that \(K_*=I_{p_*}\) and \(L_*=0_{p_*\times (n-p_*)}\). Thus, \(P={V_{\!*}}\mathrm{\text {diag} }\{I_{p_*},\,{R_{*}}\}\,{V_{\!*}}^T\), where \(\mathrm{\text {rank} }\,{R_{*}}=\mathrm{\text {rank} }P-p_*=p-p_*\) according to (9.2). Finally, the idempotence of \(P\) now implies the idempotence of \({R_{*}}\), showing that \({R_{*}}\) is an orthogonal projector. \(\square \)

Theorem 9.2

Let \({P_{\!*}},P,{\tilde{P}}\in {\mathbb R}^{n\times n}\) be orthogonal projectors satisfying

$$\begin{aligned} \mathrm{Im} \, {P_{\!*}}\subseteq \mathrm{Im} \, P, \quad \mathrm{Im} \, {P_{\!*}}\subseteq \mathrm{Im} \, {\tilde{P}}, \quad \mathrm{rank} \, P=\mathrm{rank} {\tilde{P}}. \end{aligned}$$
(9.5)

Then there exists an invertible matrix \(E\in {\mathbb R}^{n\times n}\) such that \(E{P_{\!*}}={P_{\!*}}\) and  \(\mathrm{Im} \, EP=\mathrm{Im} \,{\tilde{P}}\).

Proof

Let \(p_*:=\mathrm{\text {rank} }\, {P_{\!*}}\) and \(p:=\mathrm{\text {rank} }\, P=\mathrm{\text {rank} }{\tilde{P}}\). Then obviously \(p\ge p_*\). Let \({V_{\!*}}\in {\mathbb R}^{n\times n}\) be the orthogonal matrix in (2.1) associated with projector \({P_{\!*}}\), that is, (9.1) holds. According to Lemma 9.1 there exist orthogonal projectors \({R_{*}},\tilde{R_{*}}\in {\mathbb R}^{(n-p_*)\times (n-p_*)}\) such that

$$\begin{aligned} P={V_{\!*}}\mathrm{\text {diag} }\{I_{p_*},\,{R_{*}}\}\,{V_{\!*}}^T, \quad {\tilde{P}}={V_{\!*}}\mathrm{\text {diag} }\{I_{p_*},\,\tilde{R_{*}}\}\,{V_{\!*}}^T, \end{aligned}$$
(9.6)

and \(\mathrm{\text {rank} }\, R_*=\mathrm{\text {rank} }\, \tilde{R_{*}}=p-p_*\). Let \(Z_*,\tilde{Z}_*\in {\mathbb R}^{(n-p_*)\times (n-p_*)}\) be orthogonal matrices in (2.1) associated with the projectors \({R_{*}}\) and \(\tilde{R_{*}}\), that is, \({R_{*}}=Z_*\mathrm{\text {diag} }\{I_{p-p_*},\,0_{n-p}\}\,Z_*^T\) and \(\tilde{R_{*}}=\tilde{Z}_*\mathrm{\text {diag} }\{I_{p-p_*},\,0_{n-p}\}\,\tilde{Z}_*^T\). It follows that

$$\begin{aligned} \tilde{Z}_*Z_*^T{R_{*}}=\tilde{Z}_*\mathrm{\text {diag} }\{I_{p-p_*},\,0_{n-p}\}\,Z_*^T=\tilde{R_{*}}\tilde{Z}_*Z_*^T. \end{aligned}$$
(9.7)

We set \(E:={V_{\!*}}\mathrm{\text {diag} }\{I_{p_*},\,\tilde{Z}_*Z_*^T\}\,{V_{\!*}}^T\in {\mathbb R}^{n\times n}\). Then \(E\) is nonsingular and from (9.1) it follows that \(E{P_{\!*}}={P_{\!*}}\). Finally, by (9.6) and (9.7) we obtain

$$\begin{aligned} EP={V_{\!*}}\mathrm{\text {diag} }\{I_{p_*},\,\tilde{Z}_*Z_*^T{R_{*}}\}\,{V_{\!*}}^T={V_{\!*}}\mathrm{\text {diag} }\{I_{p_*},\,\tilde{R_{*}}\tilde{Z}_*Z_*^T\}\,{V_{\!*}}^T={\tilde{P}}E, \end{aligned}$$

which shows that \(\mathrm{\text {Im} }\, EP=\mathrm{\text {Im} }\,{\tilde{P}}E=\mathrm{\text {Im} }\, {\tilde{P}}\). The proof is complete. \(\square \)

In the following (see Theorem 9.5) we provide a certain representation of the set \({\mathcal B}(P_{\!**},P_{\!*},P)\) defined in (2.2), where \(P_{\!**}\), \(P_{\!*}\), and \(P\) are \(n\times n\) orthogonal projectors such that

$$\begin{aligned} \mathrm{\text {Im} }\, P_{\!**}\subseteq \mathrm{\text {Im} }\, P_{\!*}\subseteq \mathrm{\text {Im} }\, P. \end{aligned}$$
(9.8)

First we consider the special case with \(P=I\). In this case the elements of \({\mathcal B}(P_{\!**},P_{\!*},I)\) are characterized by (2.3). For \({\bar{G}}\in {\mathbb R}^{n\times n}\) we consider the matrices \({\bar{G}_{\!\!\perp }}\) and \({\bar{G}_{\!\parallel }}\) defined by

$$\begin{aligned} {\bar{G}_{\!\!\perp }}\!:={\bar{G}}\,(I-{P_{\!*}})\quad \text {and} \quad {\bar{G}_{\!\parallel }}\!:={\bar{G}}{P_{\!*}}. \end{aligned}$$
(9.9)

Then \({\bar{G}}={\bar{G}_{\!\!\perp }}+{\bar{G}_{\!\parallel }}\) holds. The next theorem provides a characterization of the elements \({\bar{G}}\in {\mathcal B}(P_{\!**},P_{\!*},I)\) via the matrices \({\bar{G}_{\!\!\perp }}\) and \({\bar{G}_{\!\parallel }}\) associated with \({\bar{G}}\) through (9.9). For convenience we will use the notation

$$\begin{aligned} {\bar{G}_{\!\!\perp }}{}^{\!\!T}\!:=({\bar{G}_{\!\!\perp }})^T\!, \quad {\bar{G}_{\!\parallel }}{}^{\!T}\!:=({\bar{G}_{\!\parallel }})^T\!, \quad {\bar{G}_{\!\!\perp }}{}^{\!\!\dagger }\!:=({\bar{G}_{\!\!\perp }})^\dagger \!, \quad {\bar{G}_{\!\!\perp }}{}^{\!\!\dagger T}\!:=({\bar{G}_{\!\!\perp }})^{\dagger T}\!. \end{aligned}$$
(9.10)

Theorem 9.3

Let \({P_{\!**}}\) and \({P_{\!*}}\) be orthogonal projectors with \(\mathrm{Im} \, P_{\!**}\subseteq \mathrm{Im} \, P_{\!*}\). Then \({\bar{G}}\in {\mathcal B}(P_{\!**},P_{\!*},I)\) if and only if its corresponding matrices \({\bar{G}_{\!\!\perp }}\) and \({\bar{G}_{\!\parallel }}\) satisfy

$$\begin{aligned} \mathrm{Im} \, {\bar{G}_{\!\!\perp }}\!=\mathrm{Im} \,\,(I-{P_{\!*}}), \quad {P_{\!**}}\,{\bar{G}_{\!\parallel }}\!=0, \quad {P_{\!*}}\,{\bar{G}_{\!\parallel }}\!={\bar{G}_{\!\parallel }}{}^{\!T}{P_{\!*}}. \end{aligned}$$
(9.11)

Proof

Let \({\bar{G}}\in {\mathcal B}(P_{\!**},P_{\!*},I)\). First we show that \(\mathrm{\text {Im} }\, {\bar{G}_{\!\!\perp }}\!=\mathrm{\text {Im} }\,\,(I-{P_{\!*}})=\mathrm{\text {Ker} }\,{P_{\!*}}\). Since by (2.3) the matrix \({P_{\!*}}\,{\bar{G}}\) is symmetric, we have \({P_{\!*}}\,{\bar{G}_{\!\!\perp }}={P_{\!*}}\,{\bar{G}}\,(I-{P_{\!*}})={\bar{G}}^T{P_{\!*}}\,(I-{P_{\!*}})=0\). This shows that \(\mathrm{\text {Im} }\,{\bar{G}_{\!\!\perp }}\!\subseteq \mathrm{\text {Ker} }\,{P_{\!*}}\). Moreover, \(\mathrm{\text {rank} }\,\,({\bar{G}_{\!\!\perp }}{}^{\!\!T}\!,\,{P_{\!*}})=\mathrm{\text {rank} }\,\,((I-{P_{\!*}})\,{\bar{G}}^T\!\!,\,{P_{\!*}})=\mathrm{\text {rank} }\,\,({\bar{G}}^T\!\!,\,{P_{\!*}})=n\), by the last condition in (2.3). But the definition of \({\bar{G}_{\!\!\perp }}\) in (9.9) yields that \({P_{\!*}}\,{\bar{G}_{\!\!\perp }}{}^{\!\!T}=0\), so that \(\mathrm{\text {Im} }\,{\bar{G}_{\!\!\perp }}{}^{\!\!T}\subseteq \mathrm{\text {Ker} }\,{P_{\!*}}\). It follows that \(\mathrm{\text {rank} }\,{\bar{G}_{\!\!\perp }}=\mathrm{\text {rank} }\,{\bar{G}_{\!\!\perp }}{}^{\!\!T}=\mathrm{\text {def} }{P_{\!*}}\) and thus, \(\mathrm{\text {Im} }\, {\bar{G}_{\!\!\perp }}\!=\mathrm{\text {Im} }\,\,(I-{P_{\!*}})\). Furthermore, from (2.3) we get \({P_{\!**}}{\bar{G}_{\!\parallel }}={P_{\!**}}{\bar{G}}{P_{\!*}}=0\). The last condition in (9.11) follows again from (2.3) and from the idempotence of \({P_{\!*}}\), because \({P_{\!*}}\,{\bar{G}_{\!\parallel }}={P_{\!*}}\,{\bar{G}}{P_{\!*}}={P_{\!*}}{P_{\!*}}\,{\bar{G}}{P_{\!*}}={P_{\!*}}\,{\bar{G}}^T{P_{\!*}}{P_{\!*}}={\bar{G}_{\!\parallel }}{}^{\!T}{P_{\!*}}\). Conversely, let \({\bar{G}}\in {\mathbb R}^{n\times n}\) be such that the corresponding matrices \({\bar{G}_{\!\!\perp }}\) and \({\bar{G}_{\!\parallel }}\) defined in (9.9) satisfy (9.11). We shall prove that (2.3) holds. The first equality in (2.3) follows from (9.11) and from the identity \({P_{\!**}}={P_{\!**}}{P_{\!*}}\), since \({P_{\!**}}{\bar{G}}={P_{\!**}}({\bar{G}_{\!\!\perp }}+{\bar{G}_{\!\parallel }})={P_{\!**}}{P_{\!*}}\,{\bar{G}_{\!\!\perp }}=0\). The symmetry of \({P_{\!*}}\,{\bar{G}}\) follows from \({P_{\!*}}\,{\bar{G}}={P_{\!*}}\,({\bar{G}_{\!\!\perp }}+{\bar{G}_{\!\parallel }})={P_{\!*}}\,{\bar{G}_{\!\parallel }}\) and from the symmetry of \({P_{\!*}}\,{\bar{G}_{\!\parallel }}\). Finally, \({P_{\!*}}\,{\bar{G}_{\!\!\perp }}{}^{\!\!T}\!=0\) by (9.9) and \(\mathrm{\text {rank} }\,{\bar{G}_{\!\!\perp }}{}^{\!\!T}=\mathrm{\text {rank} }\,{\bar{G}_{\!\!\perp }}=\mathrm{\text {def} }{P_{\!*}}\) by the first condition in (9.11). Hence, \(\mathrm{\text {rank} }\,\,({\bar{G}}^T\!\!,\,{P_{\!*}})=\mathrm{\text {rank} }\,\,((I-{P_{\!*}})\,{\bar{G}}^T\!\!,\,{P_{\!*}})=\mathrm{\text {rank} }\,\,({\bar{G}_{\!\!\perp }}{}^{\!\!T}\!,\,{P_{\!*}})=n\), which completes the proof.\(\square \)

Remark 9.4

If \({\bar{G}}\in {\mathcal B}(P_{\!**},P_{\!*},I)\), then the first conditions in (9.9) and (9.11) imply that

$$\begin{aligned} {\bar{G}_{\!\!\perp }}\,{\bar{G}_{\!\!\perp }}{}^{\!\!\dagger }\!=I-{P_{\!*}}={\bar{G}_{\!\!\perp }}{}^{\!\!\dagger }\,{\bar{G}_{\!\!\perp }}. \end{aligned}$$
(9.12)

In the last result of this section we provide a representation of the set \({\mathcal B}(P_{\!**},P_{\!*},P)\) in (2.2) in terms of the elements \({\bar{G}}\in {\mathcal B}(P_{\!**},P_{\!*},I)\).

Theorem 9.5

Let \({P_{\!**}}\), \({P_{\!*}}\), and \(P\) be orthogonal projectors satisfying (9.8). Then \((G,H)\in {\mathcal B}(P_{\!**},P_{\!*},P)\) if and only if for some \({\bar{G}}\in {\mathcal B}(P_{\!**},P_{\!*},I)\) we have

$$\begin{aligned} G=P\,{\bar{G}}\quad \text {and} \quad H=(I-P)\,{\bar{G}}. \end{aligned}$$
(9.13)

In this case, the matrix \({\bar{G}}\) is uniquely determined by \((G,H)\) with \({\bar{G}}=G+H\).

Proof

Let \((G,H)\in {\mathcal B}(P_{\!**},P_{\!*},P)\) and set \({\bar{G}}:=G+H\). Then clearly \(G=P{\bar{G}}\) and \(H=(I-P)\,{\bar{G}}\), by the third and fifth properties in (2.2). We show that the matrix \({\bar{G}}\) satisfies (2.3). Using the second and fifth equalities in (2.2) together with the identity \({P_{\!**}}={P_{\!**}}P\) we get \({P_{\!**}}{\bar{G}}={P_{\!**}}G+{P_{\!**}}H={P_{\!**}}PH=0\). Moreover, the identities \({P_{\!*}}={P_{\!*}}P\) and \(PH=0\) and the symmetry of \({P_{\!*}}\,G\), i.e. the fourth equality in (2.2), imply the symmetry of \({P_{\!*}}\,{\bar{G}}\), because \({P_{\!*}}\,{\bar{G}}={P_{\!*}}\,G+{P_{\!*}}H={P_{\!*}}\,G+{P_{\!*}}PH={P_{\!*}}\,G\). For the last equality in (2.3) it suffices to prove that \(\mathrm{\text {Ker} }\,{\bar{G}}\cap \mathrm{\text {Ker} }\,{P_{\!*}}=\{0\}\). Let \(v\in {\mathbb R}^n\) be such that \({\bar{G}}v=0\) and \({P_{\!*}}v=0\). Then also \(Gv=P{\bar{G}}v=0\) and \(Hv=(I-P)\,{\bar{G}}v=0\). Thus, \(v\in \mathrm{\text {Ker} }\, G\cap \mathrm{\text {Ker} }\, H\cap \mathrm{\text {Ker} }\, {P_{\!*}}\) and consequently, \(v=0\) by the first equality in (2.2). Therefore, the matrix \({\bar{G}}\) belongs to the set \({\mathcal B}(P_{\!**},P_{\!*},I)\). Conversely, for any \({\bar{G}}\in {\mathcal B}(P_{\!**},P_{\!*},I)\) the pair \((G,H):=(P\,{\bar{G}},(I-P)\,{\bar{G}})\) satisfies conditions (2.2), as can be directly verified by (2.3). Hence, \((G,H)\in {\mathcal B}(P_{\!**},P_{\!*},P)\). Finally, we have \(G+H={\bar{G}}\) and so the matrix \({\bar{G}}\) is unique. The proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šepitka, P., Šimon Hilscher, R. Principal Solutions at Infinity of Given Ranks for Nonoscillatory Linear Hamiltonian Systems. J Dyn Diff Equat 27, 137–175 (2015). https://doi.org/10.1007/s10884-014-9389-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9389-7

Keywords

Mathematics Subject Classification

Navigation