Skip to main content
Log in

Invariant Curves of Analytic Reversible Mappings Under Brjuno–Rüssmann’s Non-resonant Condition

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we prove the existence of invariant curves for analytic reversible mappings under Brjuno–Rüssmann’s non-resonant condition. In the proof we use the polynomial structure of function to truncate, introduce a parameter \(q\) and make the steps of KAM iteration infinitely small in the speed of function \(q^{n}\epsilon ,0 <q<1, \) rather than super exponential function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for SL(2, R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chow, S.-N., van Noort, M., Yi, Y.: Quasiperiodic dynamics in Hamiltonian \(1\frac{1}{2}\) degree of freedom systems far from integrability. J. Differ. Equ. 212, 366–393 (2005)

    Article  MATH  Google Scholar 

  3. del-Castillo-Negrete, D., Greene, J.M., Morrison, P.J.: Area preserving nontwist maps: periodic orbits and transition to chaos. Physica D 91, 1–23 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. del-Castillo-Negrete, D., Greene, J.M., Morrison, P.J.: Renormalization and transition to chaos in area preserving nontwist maps. Physica D 100, 311–329 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Delshams, A., de la Llave, R.: KAM theory and a partial justification of Greene’s criterion for nontwist maps. SIAM J. Math. Anal. 31, 1235–1269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fayad, B., Krikorian, R.: Rigidity results for quasiperiodic SL(2, R)-cocycles. J. Mod. Dyn. 3, 497–510 (2009)

    MathSciNet  Google Scholar 

  7. Fayad, B., Khanin, K.: Smooth linearization of commuting circle diffeomorphisms. Ann. Math. 170(2), 961–980 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fayad, B., Krikorian, R.: Herman’s last geometric theorem. Ann. Sci. Éc. Norm. Supér. 42(4), 193–219 (2009)

    MATH  MathSciNet  Google Scholar 

  9. González-Enríquez, A., Haro, A., de la Llave, R.: Singularity theory for non-twist KAM tori. Mem. Am. Math. Soc. 227 (2014)

  10. Herman, M.: Dynamics Connected with Indefinite Normal Torsion. Twist Mappings and Their Applications. IMA Vol. Math. Appl., 44, pp. 153–182. Springer, New York (1992)

  11. Liu, B.: Boundedness of solutions for equations with p-Laplacian and an asymmetric nonlinear term. J. Differ. Equ. 207, 73–92 (2004)

    Article  MATH  Google Scholar 

  12. Liu, B., Song, J.: Invariant curves of reversible mappings with small twist. Acta Math. Sin. (Engl. Ser.) 20, 15–24 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, B.: Invariant curves of quasi-periodic reversible mappings. Nonlinearity 18, 685–701 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II(1), 1–20 (1962)

    Google Scholar 

  15. Moser, J.: Combination tones for Duffing’s equation. Commun. Pure Appl. Math. 18, 167–181 (1965)

    Article  MATH  Google Scholar 

  16. Moser, J.: Stable and random motions in dynamical systems. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  17. Pöschel, J.: A lecture on the classical KAM theorem. Proc. Symp. Pure Math. 69, 707–732 (2001)

    Article  Google Scholar 

  18. Pöschel, J.: KAM \(\grave{a}\) la R. Regul. Chaotic Dyn. 16, 17–23 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rüssmann, H.: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. 1970, 67–105 (1970)

    Google Scholar 

  20. Rüssmann, H.: On a new proof of Moser’s twist mapping theorem. Celest. Mech. 14, 19–31 (1976)

    Article  MATH  Google Scholar 

  21. Rüssmann, H.: KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discret. Contin. Dyn. Syst. Ser. S 3, 683–718 (2010)

    Article  MATH  Google Scholar 

  22. Simó, C.: Invariant curves of analytic perturbed nontwist area preserving maps. Regul. Chaotic Dyn. 3, 180–195 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sevryuk, M.B.: Reversible Systems. Lecture Notes in Mathematics, vol. 1211. Springer, Berlin (1986)

    Google Scholar 

  24. van Noort, M., Porter, M., Yi, Y., Chow, S.-N.: Quasiperiodic dynamics in Bose–Einstein condensates in periodic lattices and superlattices. J. Nonlinear Sci. 17, 59–83 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, Y.: Boundedness of solutions in a class of Duffing equations with oscillating potentials. Nonlinear Anal. 71, 2906–2917 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, Z., Wang, Y.: Boundedness of solutions for a class of oscillating potentials without the twist condition. Acta Math. Sin. (Engl. Ser.) 26, 2387–2398 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xu, J., You, J., Qiu, Q.: Invariant tori of nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–386 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xu, J., Jiang, S.: Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation. Ergod. Theory Dyn. Syst. 31, 599–611 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zharnitsky, V.: Invariant curves theorem for quasi-periodic twist mappings and stability of motion in the Fermi–Ulam problem. Nonlinearity 13, 1123–1136 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, D., Xu, J.: On invariant curves of analytic non-twist area preserving mappings. (Submitted)

Download references

Acknowledgments

We would like to thank the referees for their valuable comments and suggestions. We also would like to thank Prof. Bin Liu and Prof. Yiqian Wang for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Zhang.

Additional information

The work was supported by the National Natural Science Foundation of China (11001048, 11371090, 11226131). The work was supported by the Natural Science Foundation of Jiangsu Province, China (SBK201321532).

Appendix

Appendix

In this section we formulate some lemmas which have been used in the previous section. For the detailed proofs, refer to [13, 27].

In the construction of the transformation in Lemma 2.1, we will meet the following difference equation:

$$\begin{aligned} l(x+\omega )-l(x)=g(x). \end{aligned}$$
(4.1)

Lemma 4.1

Suppose that \(l(x)\) and \( g(x)\) are real analytic on \(D(s),\) where \(D(s)=\{x\in \mathbb {C}/ 2\pi \mathbb {Z}~|~ |\text{ Im }x|\le s\}.\) Suppose \(\omega \) satisfies the Brjuno–Rüssmann’s non-resonant condition \(|\frac{k\omega }{2\pi }-l|\ge \frac{\alpha }{\Delta {(|k|)}}, ~~ \forall (k,l)\in \mathbb {Z}\times \mathbb {Z}{\setminus }\{0,0\}, \) then the difference equation (4.1) has a unique solution \(l(x)\in D(s)\) satisfying

$$\begin{aligned} \Vert l(x)\Vert _{s}\le \frac{\Delta (|k|)}{\alpha }\Vert g(x)\Vert _{s}. \end{aligned}$$

Moreover, if \(g(-x-\omega )=g(x),\) then \(l(x)\) is odd in \(x;\) if \(g(-x-\omega )=-g(x),\) \(l(x)\) is even in \(x.\)

Lemma 4.2

Suppose \(g(x)\) is m-th differentiable function on the closure \(\bar{I}\) of \(I,\) where \(I\subset \mathbb {R}\) is an interval. Let \(I_{h}=\{x~|~|g(x)|<h,x\in I\}, h>0. \) If \(|g^{(m)}(x)|\ge d>0 \) for all \(x\in I,\) where \(d\) is a constant, then

$$\begin{aligned} \text{ meas }(I_{h})\le ch^{\frac{1}{m}}, \end{aligned}$$

where \(c=2(2+3+\cdots +m+d^{-1}).\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Xu, J. Invariant Curves of Analytic Reversible Mappings Under Brjuno–Rüssmann’s Non-resonant Condition. J Dyn Diff Equat 26, 989–1005 (2014). https://doi.org/10.1007/s10884-014-9366-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9366-1

Keywords

Mathematics Subject Classification

Navigation