Skip to main content
Log in

Reduction Principle and Asymptotic Phase for Center Manifolds of Parabolic Systems with Nonlinear Boundary Conditions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We prove the reduction principle and study other attractivity properties of the center and center-unstable manifolds in the vicinity of a steady-state solution for quasilinear systems of parabolic partial differential equations with fully nonlinear boundary conditions on bounded or exterior domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We corrected in formula (2.26) a misprint found in [18].

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Amann, H.: Linear and Quasilinear Parabolic Problems. Abstract Linear Theory, vol. I. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  3. Amann, H.: Dynamic theory of quasilinear parabolic equations. II: reaction-diffusion systems. Differ. Integral Equ. 3, 13–75 (1990)

    MATH  MathSciNet  Google Scholar 

  4. Bates, P., Jones, C.: Invariant manifolds for semilinear partial differential equations. In: Kirchgraber, U., Walther, H.-O. (eds.) Dynamics Reported. A Series in Dynamical Systems and their Applications, 2nd edn, pp. 1–38. Wiley, Chichester (1989)

    Google Scholar 

  5. Carr, J.: Applications of Center Manifold Theory. Applied Mathematical Sciences, 35th edn. Springer, Berlin (1981)

    Book  Google Scholar 

  6. Chen, X.-Y., Hale, J., Tan, Bin: Invariant foliations for \(C^1\) semigroups in Banach spaces. J. Differ. Equ. 139, 283–318 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chow, S.-N., Lu, K.: Invariant manifolds for flows in Banach spaces. J. Differ. Equ. 74, 285–317 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chow, S.-N., Liu, W., Yi, Y.: Center manifolds for smooth invariant manifolds. Trans. Am. Math. Soc. 352, 5179–5211 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Denk, R., Hieber, M., Prüss, J.: \({\cal R}\)-\(boundedness\), Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 788 (2003)

  10. Denk, R., Hieber, M., Prüss, J.: Optimal \(L_p\)-\(L_q\) estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257, 193–224 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Escher, J., Prüss, J., Simonett, G.: Analytic solutions for a Stefan problem with Gibbs-Thomson correction. J. Reine Angew. Math. 563, 1–52 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Escher, J., Simonett, G.: A center manifold analysis for the Mullins–Sekerka model. J. Differ. Equ. 143, 267–292 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Henry, D.: Geometric theory of nonlinear parabolic equations, Lect. Notes Math. 840, Springer, New York (1981)

  14. Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds, Lect. Notes Math. 583, Springer, New York (1977)

  15. Irwin, M.C.: On the smoothness of the composition map. Q. J. Math. Oxf. 23, 113–133 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Irwin, M.C.: A new proof of the pseudostable manifold theorem. J. Lond. Math. Soc. 21, 557–566 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Latushkin, Y., Prüss, J., Schnaubelt, R.: Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions. J. Evol. Equ. 6, 537–576 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Latushkin, Y., Prüss, J., Schnaubelt, R.: Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discret. Contin. Dyn. Syst. B 9, 595–633 (2008)

    Article  MATH  Google Scholar 

  19. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  20. Mielke, A.: Normal hyperbolicity of center manifolds and Saint-Venant’s principle. Arch. Rational Mech. Anal. 110, 353–372 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Palmer, K.: On the stability of the center manifold. Z. Angew. Math. Phys. 38, 273–278 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pliss, V.A.: A reduction principle in the theory of stability of motion. Izvestiya Akad. Nauk SSSR, Ser. Matem. 28, 1297–1324 (1964)

    MATH  MathSciNet  Google Scholar 

  23. Prüss, J., Simonett, G.: Stability of equilibria for the Stefan problem with surface tension. SIAM J. Math. Anal. 40, 675–698 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Prüss, J., Simonett, G., Zacher, R.: On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246, 3902–3931 (2009)

    Article  MATH  Google Scholar 

  25. Renardy, M.: A centre manifold theorem for hyperbolic PDEs. Proc. R. Soc. Edinb. Sect. A 122, 363–377 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sell, G.R., You, Y.: Dynamics of evolutionary equations. Springer, New York (2002)

    Book  MATH  Google Scholar 

  27. Simonett, G.: Center manifolds for quasilinear reaction-diffusion systems. Differential Integral Equations 8, 753–796 (1995)

    MATH  MathSciNet  Google Scholar 

  28. Triebel, H.: Interpolation Theory, Function Spaces. Differential Operators. J. A. Barth, Heidelberg (1995)

    MATH  Google Scholar 

Download references

Acknowledgments

Supported by the MIUR (Italy) and the MCI (Spain), by the US National Science Foundation under Grant NSF DMS-1067929 and the Research Board and Research Council of the University of Missouri, and by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Latushkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R., Latushkin, Y. & Schnaubelt, R. Reduction Principle and Asymptotic Phase for Center Manifolds of Parabolic Systems with Nonlinear Boundary Conditions. J Dyn Diff Equat 26, 243–266 (2014). https://doi.org/10.1007/s10884-014-9360-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9360-7

Keywords

Mathematics Subject Classification

Navigation