Skip to main content
Log in

Bounded Domain Problem for the Modified Buckley–Leverett Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The focus of the present study is the modified Buckley–Leverett (MBL) equation describing two-phase flow in porous media. The MBL equation differs from the classical Buckley–Leverett (BL) equation by including a balanced diffusive–dispersive combination. The dispersive term is a third order mixed derivatives term, which models the dynamic effects in the pressure difference between the two phases. The classical BL equation gives a monotone water saturation profile for any Riemann problem; on the contrast, when the dispersive parameter is large enough, the MBL equation delivers a non-monotone water saturation profile for certain Riemann problems as suggested by the experimental observations. In this paper, we first show that for the MBL equation, the solution of the finite interval \([0,L]\) boundary value problem converges to that of the half line \([0,+\infty )\) boundary value problem exponentially as \(L\rightarrow +\infty \). This result provides a justification for the use of the finite interval in numerical studies for the half line problem [Y. Wang and C.-Y. Kao, Central schemes for the modified Buckley–Leverett equation, J. Comput. Sci. 4(1–2), 12 – 23, 2013]. Furthermore, we numerically verify that the convergence rate is consistent with the theoretical derivation. Numerical results confirm the existence of non-monotone water saturation profiles consisting of constant states separated by shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bona, J.L., Chen, H.-Q., Sun, S.M., Zhang, B.-Y.: Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete Contin. Dyn. Syst. 13(4), 921–940 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bona, J.L., Luo, L.-H.: Initial-boundary value problems for model equations for the propagation of long waves, Evolution equations (Baton Rouge, LA, 1992), Lecture Notes in Pure and Appl. Math., vol. 168, Dekker, New York, pp. 63, 65–94 (1995)

  3. Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Pet. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  4. Corey, A.T.: The interrelation between gas and oil relative permeabilities. Prod. Mon 19(1), 38–41 (1954)

    Google Scholar 

  5. DiCarlo, D.A.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40, 4215.1–4215.9 (2004)

    Article  Google Scholar 

  6. Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13, 169–186 (1990)

    Article  Google Scholar 

  7. Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29, 3389–3405 (1993)

    Article  Google Scholar 

  8. Hugoniot, H.: Propagation des mouvements dans les Corps et specialement dans les Gaz Parfaits. J. de l’Ecole Polytech. 57, 3–97 (1887). (in French)

    Google Scholar 

  9. LeVeque, R.J.: Numerical Methods for Conservation Laws. Lectures in mathematics ETH Zürich, Birkhäuser, 2nd edn. Verlag, Basel (1992)

  10. Macquorn Rankine, W.J.: On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. Lond. I 160, 277–288 (1870)

    Article  Google Scholar 

  11. Oleĭnik, O.A.: Discontinuous solutions of non-linear differential equations. Uspehi Mat. Nauk (N.S.) 12(3(75)), 3–73 (1957)

    Google Scholar 

  12. Van Duijn, C. J., Mikelic, A., and Pop, I.S.: Effective Buckley–Leverett equations by homogenization, Progress in industrial mathematics at ECMI, pp. 42–52 (2000)

  13. Van Duijn, C.J., Peletier, L.A., Pop, I.S.: A new class of entropy solutions of the Buckley–Leverett equation. SIAM J. Math. Anal. 39(2), 507–536 (2007). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang, Y.: Central schemes for the modified Buckley–Leverett equation, Ph.D. thesis, Ohio State University (2010)

  15. Wang, Y., Kao, C.-Y.: Central schemes for the modified Buckley–Leverett equation. J. Comput. Sci. 4(1–2), 12–23 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF Grant DMS-0811003 and an Alfred P. Sloan Fellowship. CYK would like to thank Prof. L.A. Peletier for introducing MBL equation and Mathematical Biosciences Institute at OSU for the hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Appendix: Proof of the Lemmas

Appendix: Proof of the Lemmas

Proof

(Proof to lemma 2.2) Let \(g(u)=\frac{f(u)}{u}=\frac{u}{u^2+M(1-u)^2}\), then

$$\begin{aligned} g^{\prime }(u)=\frac{M-(1+M)u^2}{(u^2+M(1-u)^2)^2}\left\{ \begin{array}{lll} >0{\quad }&{}\mathrm {if}&{}0<u<\sqrt{\frac{M}{M+1}}\\ =0{\quad }&{}\mathrm {if}&{}u=\sqrt{\frac{M}{M+1}}\\ <0{\quad }&{}\mathrm {if}&{}u>\sqrt{\frac{M}{M+1}} \end{array}\right. \end{aligned}$$

and hence \(g(u)\) achieves its maximum at \(u=\sqrt{\frac{M}{M+1}}\). Therefore, \(\frac{f(u)}{u}=g(u)\le D\), where \(D=\frac{f(\alpha )}{\alpha }\) and \(\alpha =\sqrt{\frac{M}{M+1}}\), and in turn, we have that \(f(u)\le Du\) for all \(0\le u \le 1\). \(\square \)

Proof

(Proof to lemma 2.3 (i))

$$\begin{aligned} \int _{0}^{+\infty } \left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}-e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| e^{\frac{\lambda x-\lambda \xi }{\epsilon \sqrt{\tau }}}\,d\xi =\epsilon \sqrt{\tau }\frac{-2+2e^{\frac{(\lambda -1)x}{\epsilon \sqrt{\tau }}}}{\lambda ^2-1} \le \frac{2\epsilon \sqrt{\tau }}{1-\lambda ^2} \quad \mathrm {if}\, \lambda \in (0,1). \end{aligned}$$

\(\square \)

Proof

(Proof to lemma 2.3 (ii))

$$\begin{aligned} \int _{0}^{+\infty } \left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}-e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| e^{\frac{\lambda x-\xi }{\epsilon \sqrt{\tau }}}\,d\xi =xe^{\frac{(\lambda -1)x}{\epsilon \sqrt{\tau }}} \le \frac{\epsilon \sqrt{\tau }}{e(1-\lambda )} \quad \mathrm {if}\, \lambda \in (0,1). \end{aligned}$$

\(\square \)

Proof

(Proof to lemma 2.3 (iii)) Based on the assumption on \(u_0\) in (2.1)

$$\begin{aligned} \int _{0}^{+\infty } \left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}-e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| e^{\frac{\lambda x}{\epsilon \sqrt{\tau }}} |u_0(\xi )|\,d\xi&\le \int _{0}^{+\infty } e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}e^{\frac{\lambda x}{\epsilon \sqrt{\tau }}} |u_0(\xi )|\,d\xi \\&\le C_ue^{\frac{\lambda x}{\epsilon \sqrt{\tau }}}\int _{0}^{L_0}e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}} \,d\xi := C_u y_1(x) \end{aligned}$$

Calculating \(y_1(x)\) with the assumption that \(\lambda \in (0,1)\), we get

$$\begin{aligned} y_1(x)=\left\{ \begin{array}{lll} e^{\frac{\lambda x}{\epsilon \sqrt{\tau }}}\int _0^{L_0}e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\,d\xi \le 2\epsilon \sqrt{\tau }e^{\frac{\lambda x}{\epsilon \sqrt{\tau }}}\le 2\epsilon \sqrt{\tau }e^{\frac{\lambda L_0}{\epsilon \sqrt{\tau }}} &{} &{} \mathrm {for}\, x\in [0,L_0]\\ e^{\frac{(\lambda -1)x}{\epsilon \sqrt{\tau }}}\int _0^{L_0}e^{\frac{\xi }{\epsilon \sqrt{\tau }}}\,d\xi \le \epsilon \sqrt{\tau }e^{\frac{(\lambda -1)x+L_0}{\epsilon \sqrt{\tau }}} \le \epsilon \sqrt{\tau }e^{\frac{\lambda L_0}{\epsilon \sqrt{\tau }}} &{}&{}\mathrm {for}\, x\in [L_0,+\infty ) \end{array} \right. \end{aligned}$$

Therefore, we get the desired inequality

$$\begin{aligned} \int _{0}^{+\infty }\left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}-e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| e^{\frac{\lambda x}{\epsilon \sqrt{\tau }}} |u_0(\xi )|\,d\xi \le 2C_u\epsilon \sqrt{\tau }e^{\frac{\lambda L_0}{\epsilon \sqrt{\tau }}} . \end{aligned}$$

\(\square \)

Proof

(Proof to lemma 2.4 (i))

$$\begin{aligned}&\int _{0}^{+\infty } \left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}+\mathrm {sgn}(x-\xi )e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| e^{\frac{\lambda x-\lambda \xi }{\epsilon \sqrt{\tau }}}\,d\xi \\&= \frac{\epsilon \sqrt{\tau }}{\lambda ^2-1} \left( -2+2\lambda e^{\frac{(\lambda -1)x}{\epsilon \sqrt{\tau }}}-2(\lambda -1)e^{-\frac{2x}{\epsilon \sqrt{\tau }}}\right) \le \frac{2\epsilon \sqrt{\tau }}{1-\lambda ^2}\qquad \mathrm { if }\, \lambda \in (0,1). \end{aligned}$$

\(\square \)

Proof

(Proof to lemma 2.4 (ii))

$$\begin{aligned}&\int _{0}^{+\infty } \left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}+\mathrm {sgn}(x-\xi )e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| e^{\frac{\lambda x-\xi }{\epsilon \sqrt{\tau }}}\,d\xi \\&= \frac{2e^{{\frac{(\lambda -3)x}{\epsilon \sqrt{\tau }}}}-2e^{{\frac{(\lambda -1)x}{\epsilon \sqrt{\tau }}}}}{\frac{-2}{\epsilon \sqrt{\tau }}} +xe^{\frac{(\lambda -1)x}{\epsilon \sqrt{\tau }}} \le \epsilon \sqrt{\tau }+\frac{\epsilon \sqrt{\tau }}{e(1- \lambda )}\qquad \mathrm { if }\, \lambda \in (0,1). \end{aligned}$$

\(\square \)

Proof

(Proof to lemma 2.4 (iii)) Based on the assumption on \(u_0\) in (2.1)

$$\begin{aligned}&\int _{0}^{+\infty } \left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}+\mathrm {sgn}(x-\xi )e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| e^{\frac{\lambda x}{\epsilon \sqrt{\tau }}}|u_0(\xi )|\,d\xi \\&\le C_ue^{\frac{\lambda x}{\epsilon \sqrt{\tau }}}\int _{0}^{L_0}\left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}+\mathrm {sgn}(x-\xi ) e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| \,d\xi : = C_u y_3(x) \end{aligned}$$

Calculating \(y_3(x)\) with the assumption that \(\lambda \in (0,1)\), we get

$$\begin{aligned} y_3(x)\le \left\{ \begin{array}{l} e^{\frac{(\lambda -1)x}{\epsilon \sqrt{\tau }}}\int _0^x(e^{-\frac{\xi }{\epsilon \sqrt{\tau }}}+e^{\frac{\xi }{\epsilon \sqrt{\tau }}})\,d\xi +e^{\frac{(\lambda +1)x}{\epsilon \sqrt{\tau }}}\int _x^{L_0}e^{-\frac{\xi }{\epsilon \sqrt{\tau }}}\,d\xi \le 2\epsilon \sqrt{\tau }e^{\frac{\lambda L_0}{\epsilon \sqrt{\tau }}}, x\in [0,L_0]\\ e^{\frac{(\lambda -1)x}{\epsilon \sqrt{\tau }}}\int _0^{L_0}(e^{-\frac{\xi }{\epsilon \sqrt{\tau }}}+e^{\frac{\xi }{\epsilon \sqrt{\tau }}})\,d\xi \le \epsilon \sqrt{\tau }e^{\frac{(\lambda -1)x+L_0}{\epsilon \sqrt{\tau }}} \le \epsilon \sqrt{\tau }e^{\frac{\lambda L_0}{\epsilon \sqrt{\tau }}}, x\in [L_0,+\infty ) \end{array} \right. \end{aligned}$$

Therefore, we get the desired inequality

$$\begin{aligned} \int _{0}^{+\infty } \left| e^{-\frac{x+\xi }{\epsilon \sqrt{\tau }}}+\mathrm {sgn}(x-\xi )e^{-\frac{|x-\xi |}{\epsilon \sqrt{\tau }}}\right| e^{\frac{\lambda x}{\epsilon \sqrt{\tau }}}|u_0(\xi )|\,d\xi \le 2C_u\epsilon \sqrt{\tau }e^{\frac{\lambda L_0}{\epsilon \sqrt{\tau }}}. \end{aligned}$$

\(\square \)

Proof

(Proof to lemma 2.5 (i))

$$\begin{aligned} \left| \phi _1(x)-e^{-\frac{x}{\epsilon \sqrt{\tau }}}\right| =e^{-\frac{L}{\epsilon \sqrt{\tau }}}\left| \frac{e^{-\frac{x}{\epsilon \sqrt{\tau }}}-e^{\frac{x}{\epsilon \sqrt{\tau }}}}{e^{\frac{L}{\epsilon \sqrt{\tau }}}-e^{-\frac{L}{\epsilon \sqrt{\tau }}}}\right| =e^{-\frac{L}{\epsilon \sqrt{\tau }}}\left| \phi _2(x)\right| . \end{aligned}$$

\(\square \)

Proof

(Proof to lemma 2.5 (ii)) Since \(\phi _2(x)= \frac{e^{\frac{x}{\epsilon \sqrt{\tau }}}-e^{-\frac{x}{\epsilon \sqrt{\tau }}}}{e^{\frac{L}{\epsilon \sqrt{\tau }}}-e^{-\frac{L}{\epsilon \sqrt{\tau }}}} \), we see that \( \phi _2^{\prime }(x)=\frac{1}{\epsilon \sqrt{\tau }}\frac{e^{\frac{x}{\epsilon \sqrt{\tau }}}+e^{-\frac{x}{\epsilon \sqrt{\tau }}}}{e^{\frac{L}{\epsilon \sqrt{\tau }}}-e^{-\frac{L}{\epsilon \sqrt{\tau }}}}>0 \) and hence \(\phi _2(x)\le \phi _2(L)=1\) for \(x\in [0,L]\). \(\square \)

Proof

(Proof to lemma 2.5 (iii)) \(\phi _2^{\prime }(x)=\frac{1}{\epsilon \sqrt{\tau }}\frac{e^{\frac{x}{\epsilon \sqrt{\tau }}}+e^{-\frac{x}{\epsilon \sqrt{\tau }}}}{e^{\frac{L}{\epsilon \sqrt{\tau }}}-e^{-\frac{L}{\epsilon \sqrt{\tau }}}}\) gives that \(\phi _2^{\prime \prime }(x)=\frac{1}{\epsilon ^2\tau }\phi _2(x)>0\), and hence \(\phi _2^{\prime }(x)\le \phi _2^{\prime }(L)=\frac{1}{\epsilon \sqrt{\tau }}\frac{e^{\frac{L}{\epsilon \sqrt{\tau }}}+e^{-\frac{L}{\epsilon \sqrt{\tau }}}}{e^{\frac{L}{\epsilon \sqrt{\tau }}}-e^{-\frac{L}{\epsilon \sqrt{\tau }}}}=\frac{1}{\epsilon \sqrt{\tau }}\frac{e^{\frac{2L}{\epsilon \sqrt{\tau }}}+1}{e^{\frac{2L}{\epsilon \sqrt{\tau }}}-1}\le \frac{2}{\epsilon \sqrt{\tau }}\)    if \(\epsilon \ll 1\) for \(x\in [0,L]\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Kao, CY. Bounded Domain Problem for the Modified Buckley–Leverett Equation. J Dyn Diff Equat 26, 607–629 (2014). https://doi.org/10.1007/s10884-014-9352-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9352-7

Keywords

Mathematics Subject Classification (2008)

Navigation