Skip to main content
Log in

A Modified Poincaré Method for the Persistence of Periodic Orbits and Applications

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the persistence of periodic orbits under perturbations in dynamical systems generated by evolutionary equations, which are not smoothing in finite time, but only asymptotically smoothing. When the periodic orbit of the unperturbed system is non-degenerate, we show the existence and uniqueness of a periodic orbit (with a minimal period near the minimal period of the unperturbed problem) by using “modified” Poincaré methods. Examples of applications, including the perturbed hyperbolic Navier–Stokes equations, systems of damped wave equations and the system of second grade fluids, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelhedi B.: PhD thesis, Université Paris-Sud, Mathématique (2005)

  2. Abdelhedi B.: Existence of periodic solutions of a system of damped wave equations in thin domains. Discret. Contin. Dyn. Syst. 20, 767–800 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arrieta J., Carvalho A., Hale J.K.: A damped hyperbolic equation with critical exponent. Commun. Partial Differ. Equ. 17, 841–866 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babin A.V., Vishik M.I.: Attractors of Evolutionary Equations. North-Holland, Amsterdam (1989)

    Google Scholar 

  5. Brenier Y., Natalini R., Puel M.: On a relaxation approximation of the incompressible Navier–Stokes equations. Proc. Am. Math. Soc. 132, 1021–1028 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen Z.-M., Geraint Price W.: Remarks on the time dependent periodic Navier–Stokes flows on a two-dimensional torus. Commun. Math. Phys. 207, 81–106 (1999)

    Article  MATH  Google Scholar 

  7. Cioranescu, D., Ouazar, E.H.: Existence and uniqueness for fluids of second grade, Collège de France seminar, Vol. VI (Paris, 1982/1983), pp. 178–197. Boston, MA, Pitman (1984)

  8. Crouzeix, M., Rappaz, J.: On Numerical Approximation in Bifurcation Theory, R.M.A. 13. Masson, Springer Verlag (1990)

  9. Dunn J.E., Fosdick R.L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 56, 191–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gurova I.N., Kamenskii M.I.: On the method of semidiscretization in periodic solutions problems for quasilinear autonomous parabolic equations. Differ. Equ. 32, 101–106 (1996) (in Russian)

    MathSciNet  Google Scholar 

  11. Hale J.K.: Ordinary Differential Equations. 1st edn. Wiley, New York (1969)

    MATH  Google Scholar 

  12. Hale J.K.: Ordinary Differential Equations. 2nd edn. Robert E. Krieger Publishing Company, Malabar, Florida (1980)

    MATH  Google Scholar 

  13. Hale, J.K.: Asymptotic Behaviour and Dynamics in Infinite Dimensions, Research Notes in Mathematics, vol. 132, pp. 1–41. Pitman, Boston (1985)

  14. Hale, J.K.: Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence, RI (1988)

  15. Hale J.K., Raugel G.: Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation. J. Differ. Equ. 73, 197–214 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hale J.K., Raugel G.: Lower Semicontinuity of the attractor for a singularly perturbed hyperbolic equation. J. Dyn. Differ. Equ. 2, 19–67 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hale J.K., Raugel G.: A damped hyperbolic equation on thin domains. Trans. Am. Math. Soc. 329, 185–219 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hale J.K., Raugel G.: Reaction-diffusion equation on thin domains. J. Math. Pures Appl. 71, 33–95 (1992)

    MATH  MathSciNet  Google Scholar 

  19. Hale J.K., Raugel G.: Regularity, determining modes and Galerkin method. J. Math. Pures Appl. 82, 1075–1136 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Hale, J.K., Raugel, G.: Local coordinate systems and persistence of periodic orbits under autonomous and non-autonomous perturbations, manuscript (2009)

  21. Hale J.K., Weedermann M.: On perturbations of delay-differential equations with periodic orbit. J. Differ. Equ. 197, 219–246 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hale, J.K., Joly, R., Raugel, G.: In preparation

  23. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840. Springer-Verlag, Berlin (1981)

  24. Iooss G.: Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d’évolution du type Navier–Stokes. Arch. Ration. Mech. Anal. 47, 301–329 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iudovich, V.I.: The onset of auto-oscillations in a fluid. J. Appl. Math. Mech. 35, 587–603 (1971); (1972) translated from Prikl. Mat. Meh. 35 , 638–655 (1971) (Russian)

    Google Scholar 

  26. Jaffal, B.: Manuscript in preparation

  27. Johnson R., Kamenskii M., Nistri P.: Existence of periodic solutions of an autonomous damped wave equation in thin domains. J. Dyn. Differ. Equ. 10, 409–424 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Johnson R., Kamenskii M., Nistri P.: Erratum to “existence of periodic solutions of an autonomous damped wave equation in thin domains”. J. Dyn. Differ. Equ. 12, 675–679 (2000)

    Article  MathSciNet  Google Scholar 

  29. Johnson R., Kamenskii M., Nistri P.: Bifurcation and multiplicity results for periodic solutions of a damped wave equation in a thin domain. Fixed point theory with applications in nonlinear analysis. J. Comput. Appl. Math. 113, 123–139 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Joly R.: Convergence of the wave equation damped on the interior to the one damped on the boundary. J. Differ. Equ. 229, 588–653 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kato T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1966)

    MATH  Google Scholar 

  32. Ladyzhenskaya O.: On the determination of minimal global attractors for the Navier–Stokes and other partial differential equations. Russ. Math. Surv. 42, 27–73 (1987)

    Article  MATH  Google Scholar 

  33. Ladyzhenskaya O.: Attractors for Semigroups and Evolution Equations. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  34. Moise I., Rosa R., Wang X.: Attractors for non-compact semigroups via energy equations. Nonlinearity 11, 1369–1393 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Paicu, M., Raugel, G.: A hyperbolic singular perturbation of the Navier–Stokes equations in R 2, manuscript

  36. Paicu, M., Raugel, G., Rekalo, A.: Regularity of the global attractor and finite-dimensional behavior for the second grade fluid equations. J. Differ. Equ. (submitted)

  37. Palis J., de Melo W.: Geometric Theory of Dynamical Systems. Springer-Verlag, Berlin (1982)

    MATH  Google Scholar 

  38. Raugel, G.: Singularly perturbed hyperbolic equations revisited. In: Fiedler, B. et al. (eds.) International conference on differential equations. Proceedings of the conference, Equadiff ’99, Berlin, Germany, 1999. Vol. 1, pp. 647–652. World Scientific, Singapore (2000)

  39. Raugel, G.: Global attractors in partial differential equations. Handbook of Dynamical Systems, vol. 2, pp. 885–982. North-Holland, Amsterdam (2002)

  40. Sell G.R., You Y.: Dynamics of Evolutionary Equations, Applied Mathematical Sciences, vol 143. Springer-Verlag, New York (2002)

    Google Scholar 

  41. Temam R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York (1988)

    MATH  Google Scholar 

  42. Urabe M.: Nonlinear Autonomous Oscillations. Academic Press, New York (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Raugel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hale, J.K., Raugel, G. A Modified Poincaré Method for the Persistence of Periodic Orbits and Applications. J Dyn Diff Equat 22, 3–68 (2010). https://doi.org/10.1007/s10884-009-9155-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-009-9155-4

Keywords

Mathematics Subject Classification (2000)

Navigation