Skip to main content
Log in

Metric Mean Dimension of Free Semigroup Actions for Non-Compact Sets

  • Research
  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we introduce the notions of upper metric mean dimension, u-upper metric mean dimension, l-upper metric mean dimension of free semigroup actions for non-compact sets via Carathéodory-Pesin structure. Firstly, the lower and upper estimations of the upper metric mean dimension of free semigroup actions are obtained by local metric mean dimensions. Secondly, one proves a variational principle that relates the u-upper metric mean dimension of free semigroup actions for non-compact sets with the corresponding skew product transformation. Furthermore, using the variational principle above, \(\varphi \)-irregular set acting on free semigroup actions shows full upper metric mean dimension in the system with the gluing orbit property. Some of our analysis generalizes the results obtained by Carvalho et al. [11], Lima and Varandas [21].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Barreira L, Schmeling J. Sets of "non-typical" points have full topological entropy and full Hausdorff dimension. Israel J Math. 2000;116:29–70.

  2. Biś A. An analogue of the variational principle for group and pseudogroup actions. Ann Inst Fourier (Grenoble). 2013;63(3):839–863.

  3. Bomfim T, Torres MJ, Varandas P. Topological features of flows with the reparametrized gluing orbit property. J Diff Equat. 2017;262(8):4292–4313.

  4. Bomfim T, Torres MJ, Varandas P. Gluing orbit property and partial hyperbolicity. J Diff Equat. 2021;272:203–221.

  5. Bomfim T, Varandas P. The gluing orbit property, uniform hyperbolicity and large deviations principles for semiflows. J Diff Equat. 2019;267(1):228–266.

  6. Bowen R. Entropy for group endomorphisms and homogeneous spaces. Trans Amer Math Soc. 1971;153:401–414.

  7. Bowen R. Periodic points and measures for Axiom \(A\) diffeomorphisms. Trans Amer Math Soc. 1971;154:377–397.

  8. Brin M, Katok A. On local entropy, Geometric dynamics (Rio de Janeiro, 1981); 1983. pp. 30–38.

  9. Bufetov A. Topological entropy of free semigroup actions and skew-product transformations. J Dynam Control Syst. 1999;5(1):137–143.

  10. Carvalho M, Rodrigues F, Varandas P. Quantitative recurrence for free semigroup actions. Nonlinearity. 2018;31(3):864–886.

  11. Carvalho M, Rodrigues F, Varandas P. A variational principle for the metric mean dimension of free semigroup actions. Ergodic Theory Dynam Syst. 2022;42(1):65–85.

    Article  MathSciNet  Google Scholar 

  12. Chen E, Tassilo K, Shu L. Topological entropy for divergence points. Ergodic Theory Dynam Syst. 2005;25(4):1173–1208.

  13. Cheng D, Li Z, Selmi B. Upper metric mean dimensions with potential on subsets. Nonlinearity. 2021;34(2):852–867.

  14. Dong Y, Oprocha P, Tian X. On the irregular points for systems with the shadowing property. Ergodic Theory Dynam Syst. 2018;38(6):2108–2131.

  15. Falconer K. Fractal geometry: mathematical foundations and applications 2nd Hoboken. NJ: John Wiley & Sons, Inc; 2003.

    Book  Google Scholar 

  16. Ghys É, Langevin R, Walczak P. Entropie géométrique des feuilletages. Acta Math. 1988;160(1–2):105–142.

  17. Gromov M. Topological invariants of dynamical systems and spaces of holomorphic maps. I Math Phys Anal Geom. 1999;2(4):323–415.

    Article  MathSciNet  Google Scholar 

  18. Gutman Y, Qiao Y, Tsukamoto M. Application of signal analysis to the embedding problem of \(\mathbb{Z} ^k\)-actions. Geom Funct Anal. 2019;29(5):1440–1502.

  19. Ju Y, Ma D, Wang Y. Topological entropy of free semigroup actions for noncompact sets. Discret Contin Dyn Syst. 2019;39(2):995–1017.

    Article  MathSciNet  Google Scholar 

  20. Kloeden PE, Rasmussen M. Nonautonomous dynamical systems. Mathematical Surveys and Monographs: American Mathematical Society, Providence, RI; 2011;176.

  21. Lima H, Varandas P. On the rotation sets of generic homeomorphisms on the torus \({\mathbb{T} }^d\). Ergodic Theory Dynam Syst. 2021;41(10):2983–3022.

    Article  Google Scholar 

  22. Lindenstrauss E. Mean dimension, small entropy factors and an embedding theorem, 1999. Inst Hautes Études Sci Publ Math. 2000;89:227–262.

  23. Lindenstrauss E, Tsukamoto M. From rate distortion theory to metric mean dimension: variational principle. IEEE Trans Inform Theory. 2018;64(5):3590–3609.

  24. Lindenstrauss E, Tsukamoto M. Double variational principle for mean dimension. Geom Funct Anal. 2019;29(4):1048–1109.

  25. Lindenstrauss E, Weiss B. Mean topological dimension Israel J Math. 2000;115:1–24.

    Article  Google Scholar 

  26. Ma J, Wen Z. A billingsley type theorem for bowen entropy. C R Math Acad Sci Paris. 2008;346(9–10):503–507.

  27. Meyerovitch T, Tsukamoto M. Expansive multiparameter actions and mean dimension. Trans Amer Math Soc. 2019;371(10):7275–7299.

  28. Olsen L, Winter S. Normal and non-normal points of self-similar sets and divergence points of self-similar measures. J London Math Soc (2). 2003;67(1):103–122.

  29. Pesin Y. Dimension theory in dynamical systems: chicago lectures in mathematics, contemporary views and applications. Chicago, IL: University of Chicago Press; 1997.

    Book  Google Scholar 

  30. Pesin Y, Pitskel’ B. Topological pressure and the variational principle for noncompact sets. Funktsional Anal i Prilozhen. 1984;18(4):50–63, 96.

  31. Rodrigues F, Jacobus T, Silva M. Some variational principles for the metric mean dimension of a semigroup action. J Dyn Control Syst. 2023;29(3):919–944.

  32. Rodrigues FB, Varandas P. Specification and thermodynamical properties of semigroup actions. 2016;57(5).

  33. Ruelle D. Historical behaviour in smooth dynamical systems. Global analysis of dynamical systems. Bristol: Inst. Phys; 2001. p. 63–66.

  34. Sun P. Minimality and gluing orbit property. Discret Contin Dyn Syst. 2019;39(7):4041–4056.

  35. Sun P. Zero-entropy dynamical systems with the gluing orbit property. Adv Math. 2020;372(107294):24.

    MathSciNet  Google Scholar 

  36. Takens F. Orbits with historic behaviour, or non-existence of averages. Nonlinearity. 2008;21(3):T33–T36.

  37. Thompson DJ. Irregular sets, the \(\beta \)-transformation and the almost specification property. Trans Amer Math Soc. 2012;364(10):5395–5414.

  38. Tian X, Sun W. Diffeomorphisms with various \(C^1\) stable properties. Acta Math. Sci. Ser. B (Engl. Ed.). 2012;32(2):552–558.

  39. Tsukamoto M. Mean dimension of the dynamical system of Brody curves. Invent Math. 2018;211(3):935–968.

  40. Walters P. An introduction to ergodic theory, Graduate Texts in Mathematics. New York-Berlin: Springer-Verlag; 1982, 79.

  41. Yano K. A remark on the topological entropy of homeomorphisms. Invent Math. 1980;59(3):215–520.

  42. Zhu L, Ma D. The upper capacity topological entropy of free semigroup actions for certain non-compact sets. J Stat Phys. 2021;182(1):19.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors really appreciate the referees’ valuable remarks and suggestions which helped a lot.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongkui Ma.

Ethics declarations

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Ye, X. & Ma, D. Metric Mean Dimension of Free Semigroup Actions for Non-Compact Sets. J Dyn Control Syst 30, 12 (2024). https://doi.org/10.1007/s10883-024-09696-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10883-024-09696-y

Keywords

Mathematics Subject Classification (2010)

Navigation