Skip to main content
Log in

Infinitely Many Solutions for the Nonlinear Schrödinger–Poisson System

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the following nonlinear Schrödinger–Poisson system in \(\mathbb {R}^{3}\):

$$ \left\{\begin{array}{ll} -{\Delta} u+u+K(|y|){\Phi}(y)u=Q(|y|)|u|^{p-1}u& \text{in}\hspace{1.14mm} \mathbb{R}^{3},\vspace{0.2cm}\\ -{\Delta} {\Phi}=K(|y|)u^{2}& \text{in}\hspace{1.14mm} \mathbb{R}^{3}, \end{array} \right. $$
(0.1)

where 1 < p < 5, K(|y|) and Q(|y|) are two radial, positive, and locally Hölder continuous functions satisfying that

$$ K(r)=\frac{a}{r^{m}}+O\Big(\frac{1}{r^{m+\theta}}\Big),~~Q(r)=1+\frac{b}{r^{n}} +O\Big(\frac{1}{r^{n+\varepsilon}}\Big)~~\text{as}~r\rightarrow+\infty, $$

where \(b\in \mathbb {R}\), a,m,n,𝜃 and ε are positive constants. Simulated by the work of Wang and Zhao [31], either a > 0, b < 0 or a > 0, b > 0, m > 2n holds, we use the Lyapunov–Schmidt reduction method to construct infinitely many nonradial positive solutions of (0.1) with arbitrary large energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ambrosetti A. On schrödinger–poisson systems. Milan J Math 2008; 76:257–74.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A, Ruiz D. Multiple bound states for the schrödinger–poisson problem. Commun Contemp Math 2008;10:391–404.

    Article  MathSciNet  MATH  Google Scholar 

  3. Benci V, Fortunato D. Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations. Rev Math Phys 2002;14:409–20.

    Article  MathSciNet  MATH  Google Scholar 

  4. Benguria R, Brézis H, Lieb EH. The Thomas-Fermi-von weizsäcker theory of atoms and molecules. Comm Math Phys 1981;79:167–80.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao D, Noussair E S, Yan S. Solutions with multiple peaks for nonlinear elliptic equations. Proc Roy Soc Edinburgh Sect A 1999;129:235–64.

    Article  MathSciNet  MATH  Google Scholar 

  6. Catto I, Lions P L. Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems. Comm. Partial Differential Equations 1992; 17:1051–110.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cerami G, Vaira G. Positive solutions for some non-autonomous schrödinger–poisson systems. J Differ Equ 2010;248:521–43.

    Article  MATH  Google Scholar 

  8. Chen J, Tang X, Luo H. Infinitely many solutions for fractional schrödinger–poisson systems with sign-changing potential. Electron J Differ Equ 2017;2017:1–13.

    MATH  Google Scholar 

  9. Coclite GM. A multiplicity result for the nonlinear schrödinger–maxwell equations. Commun Appl Anal 2003;7:417–23.

    MathSciNet  MATH  Google Scholar 

  10. d’Avenia P, Pomponio A, Vaira G. Infinitely many positive solutions for a schrödinger–poisson system. Appl Math Lett 2011;24:661–64.

    Article  MathSciNet  MATH  Google Scholar 

  11. d’Aprile T, Mugnai D. Solitary waves for nonlinear Klein–Gordon–Maxwell and schrödinger–maxwell equations. Proc Roy Soc Edinburgh Sect A 2004;134: 893–906.

    Article  MathSciNet  MATH  Google Scholar 

  12. d’Aprile T, Wei J. On bound states concentrating on spheres for the Maxwell–schrödinger equation. SIAM J Math Anal 2005;37:321–42.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gidas B, Ni W, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in Rn. Adv Math 1981;7:369–402.

    MATH  Google Scholar 

  14. Ianni I, Vaira G. On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv Nonlinear Stud 2008; 8:573–95.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ianni I, Vaira G. Solutions of the Schrödinger–Poisson system concentrating on spheres, part I: Necessary conditions. Math Models Methods Appl Sci 2009; 19:707–20.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ianni I. Solutions of the Schrödinger–Poisson system concentrating on spheres, part II: Existence. Math Models Methods Appl Sci 2009;19:877–910.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji C, Fang F, Zhang B. Least energy sign-changing solutions for the nonlinear Schrödinger–Poisson system. Electron J Differ Equ 2017;2017:1–13.

    MATH  Google Scholar 

  18. Khoutir S. Infinitely many high energy radial solutions for a class of nonlinear Schrödinger–Poisson system in \(\mathbb {R}^{3}\). Appl Math Lett 2019;90:139–45.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kwong M. Uniqueness of positive solutions of Deltauu + up = 0 in \(\mathbb {R}^{3}\). Arch Rat Mech Anal 1989;105:243–66.

    Article  Google Scholar 

  20. Kim S, Seok J. On nodal solutions of the nonlinear Schrödinger–Poisson equations. Commun Contemp Math 2012;14:12450041–12450057.

    Article  Google Scholar 

  21. Li B, Long W, Tang Z, Yang J. Uniqueness of positive bound states with multiple bumps for schrödinger–poisson system. Calc Var Partial Differential Equations 2021;60:240.

    Article  MATH  Google Scholar 

  22. Li G, Peng S, Yan S. Infinitely many positive solutions for the nonlinear Schrodinger-Possion system. Comm Contem Math 2010;12:1069–1092.

    Article  MATH  Google Scholar 

  23. Lieb E H, Simon B. The Thomas–Fermi theory of atoms, molecules and solids. Adv Math 1977;23:22–116.

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu Z, Wang Z, Zhang J. Infinitely many sign-changing solutions for the nonlinear schrödinger–poisson system. Ann Mat Pur Appl 2016;195: 775–794.

    Article  MATH  Google Scholar 

  25. Lions PL. Solutions of Hartree–Fock equations for Coulomb systems. Comm Math Phys 1987;109:33–97.

    Article  MathSciNet  MATH  Google Scholar 

  26. Long W, Xiong Z. Non-radial multipeak positive solutions for the schrödinger–poisson problem. J Math Anal Appl 2017;455:680–697.

    Article  MathSciNet  MATH  Google Scholar 

  27. Markowich P, Ringhofer C, Schmeiser C. Semiconductor equations. Vienna: Springer-Verlag; 1990.

    Book  MATH  Google Scholar 

  28. Ruiz D. Semiclassical states for coupled schrödinger–maxwell equations: Concentration around a sphere. Math Models Methods Appl Sci 2005;15: 141–64.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruiz D. The Schrödinger–Poisson equation under the effect of a nonlinear local term. J Funct Anal 2006;237:655–74.

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun M, Su J, Zhao L. Infinitely many solutions for a schrödinger–poisson system with concave and convex nonlinearities. Discrete Contin Dyn. Syst. 2015;35:427–40.

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang L, Zhao C. Infinitely many solutions for nonlinear schrödinger equations with slow decaying of potential. Discrete Contin Dyn Syst 2017;37:1707–731.

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang L, Wei J, Yan S. A Neumann problem with critical exponent in non-convex domain and Lin–Ni’s conjecture. Trans Amer Math Soc 2009; 361:1189–208.

    MathSciNet  Google Scholar 

  33. Wei J, Yan S. Infinitely many solutions for the prescribed scalar curvature problem on Sn. J Funct Anal 2010;258:3048–081.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei J, Yan S. Infinitely many solutions for the nonlinear Schrödinger equations in \(\mathbb {R}^{N}\). Calc Var. Partial Differential Equations 2010;37:423–39.

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu M, Chen H. Existence and uniqueness of multi-bump solutions for nonlinear Schrödinger–Poisson systems. Adv Nonlinear Stud 2021;21:661–81.

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang X, Ma S, Xie Q. Infinitely many bound state solutions of Schrödinger–Poisson equations in \(\mathbb {R}^{3}\). J Appl Anal Comput 2018;8:1239–259.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their valuable comments.

Funding

The corresponding author L. Wang is supported by NSFC11901531 and China Scholarship Council 202008330417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lushun Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Some useful estimates

Appendix. Some useful estimates

In this section, we present some technical computations. We first give the following basic estimate.

Lemma A.1

Let r ∈Λk with k sufficiently large, then

$$ \sum\limits_{j=2}^{k}U(l|x_{j}-x_{1}|)=2(1+O(e^{-\frac{l\rho}{2}}))U(l \rho),\quad \sum\limits_{j=2}^{k}U^{l}(|x_{j}-x_{1}|)=2(1+O(e^{-\frac{l\rho}{2}}))U^{l}(\rho), $$

where 0 < l ≤ 1, \(\rho =2r\sin \limits \frac {\pi }{k}\).

Proof

For k large enough, we have

$$\aligned \sum\limits_{j=3}^{[\ln k]+1}U(l|x_{j}-x_{1}|)&\leq \sum\limits_{j=3}^{[\ln k]+1}e^{-2lr\sin\frac{(j-1)\pi}{k}}\leq \sum\limits_{j=3}^{[\ln k]+1}e^{-2(j-1)l(1+o(1))\pi\frac{r}{k}}\\ &<\sum\limits_{j=3}^{\infty}e^{-\frac{7l\pi(j-1)}{4}\frac{r}{k}}\leq 2e^{-\frac{7l\pi r}{2k}}\leq 2e^{-\frac{l\rho}{2}}U(l\rho). \endaligned$$

Then it follows from symmetry that

$$ \aligned \sum\limits_{j=2}^{k}U(l|x_{j}-x_{1}|)&=2\sum\limits_{j=2}^{[\ln k]+1}U(l|x_{j}-x_{1}|)+O(ke^{-2lr\sin\frac{[\ln k]\pi}{k}})\\ &=2U(l|x_{j}-x_{1}|)+O(e^{-\frac{l\rho}{2}}U(l\rho))=2(1+O(e^{-\frac{l\rho}{2}}))U(l \rho). \endaligned $$

So the first estimation holds. By a similar argument, we see easily that the second estimation also holds. □

Lemma A.2

Let r ∈Λk with k sufficiently large, then for any \(y\in {\Omega }_{j_{0}}\), j0 = 1, 2,⋯ ,k,

$$ \begin{array}{@{}rcl@{}} \mathbb{U}_{r}(y)=U(y-x_{j_{0}})+O\Big(U\Big(\frac{\rho}{2}\Big)\Big), \end{array} $$
(A.1)
$$ \begin{array}{@{}rcl@{}} \mathbb{U}_{r}(y)=U(y-x_{j_{0}})+O\big(e^{-\frac{\rho}{4}}U^{\frac{1}{2}}(y-x_{j_{0}})\big). \end{array} $$
(A.2)

Proof

For any y ∈Ω1, it is easy to see that |yxj|≥|yx1| with j≠ 1. If \(|y-x_{1}|\geq \frac {|x_{j}-x_{1}|}{2}\), then we have \(|y-x_{j}|\geq \frac {|x_{j}-x_{1}|}{2}\). If \(|y-x_{1}|<\frac {|x_{j}-x_{1}|}{2}\), then we have

$$ |y-x_{j}|\geq |x_{j}-x_{1}|-|y-x_{1}|\geq\frac{|x_{j}-x_{1}|}{2}. $$

Thus it follows that \(|y-x_{j}|\geq \frac {|x_{j}-x_{1}|}{2}\) for any y ∈Ω1. By Lemma A.1, we get

$$ \aligned \sum\limits_{j=1}^{k} U(y-x_{j})&=U(y-x_{1})+\sum\limits_{j=2}^{k} U(y-x_{j})\\ &=U(y-x_{1})+O\Big(\sum\limits_{j=2}^{k} U\Big(\frac{|x_{j}-x_{1}|}{2}\Big)\Big)\\ &=U(y-x_{1})+O\Big(U\Big(\frac{\rho}{2}\Big)\Big). \endaligned$$

By symmetry, we see that (A.1) holds.

Similarly, Lemma A.1 gives that for any y ∈Ω1,

$$\aligned \sum\limits_{j=1}^{k} U(y-x_{j})&=U(y-x_{1})+\sum\limits_{j=2}^{k} U(y-x_{j})\\ &=U(y-x_{1})+O\Big(\sum\limits_{j=2}^{k} U^{\frac{1}{2}}\Big(\frac{|x_{j}-x_{1}|}{2}\Big)U^{\frac{1}{2}}(y-x_{1})\Big)\\ &=U(y-x_{1})+O\big(e^{-\frac{\rho}{4}}U^{\frac{1}{2}}(y-x_{1})\big). \endaligned$$

By symmetry, (A.2) also follows. □

Lemma A.3

For any α > 0 and 0 < μ ≤ 1, \(\mathbb {U}_{r}\), \(\mathbb {V}_{r,\mu }\) and \(\frac {\mathbb {U}_{r}^{\alpha }}{\mathbb {V}_{r,\mu }}\) are bounded in \(\mathbb {R}^{3}\).

Proof

By (A.2) in Lemma A.2, there exists a C > 0 independent of k such that \(0<\mathbb {U}_{r}\leq C\) for any y ∈Ωj with j = 1, 2,⋯ ,k. Note that \(\mathbb {R}^{3}=\cup _{j=1}^{k}{\Omega }_{j}\), then \(0<\mathbb {U}_{r}\leq C\) for any \(y\in \mathbb {R}^{3}\). So \(\mathbb {U}_{r}\) is bounded in \(\mathbb {R}^{3}\).

The asymptotical behavior of Vμ at infinity yields that for any y ∈Ω1 and some C > 0,

$$\aligned 0&<\mathbb{V}_{r,\mu}=\sum\limits_{j=1}^{k}V_{\mu}(y-x_{j})\leq V_{\mu}(y-x_{1})+ \sum\limits_{j=2}^{k}\frac{1}{|y-x_{j}|}{\int}_{\mathbb{R}^{3}}U^{2\mu}(y)dy\\ &\leq \sum\limits_{j=2}^{k}\frac{2}{|x_{1}-x_{j}|}{\int}_{\mathbb{R}^{3}}U^{2\mu}(y)dy+C\leq \frac{Ck}{r} \sum\limits_{j=2}^{k}\frac{1}{j-1}\leq \frac{Ck\ln k}{r}\leq C. \endaligned $$

Thus, we see that \(\sum \limits _{j=1}^{k}V_{\mu }(y-x_{j})\) is bounded by symmetry.

For any y ∈Ω1, we have

$$\aligned \frac{\mathbb{U}_{r}^{\alpha}}{\mathbb{V}_{r,\mu}}&\leq\sum\limits_{j=1}^{k}\frac{U^{\alpha}(y-x_{j})}{V_{\mu}(y-x_{j})} =\frac{U^{\alpha}(y-x_{1})}{V_{\mu}(y-x_{1})}+\sum\limits_{j=2}^{k}\frac{U^{\alpha}(y-x_{j})}{V_{\mu}(y-x_{j})}\\ &=\frac{U^{\alpha}(y-x_{1})}{V_{\mu}(y-x_{1})}+O\Big(\sum\limits_{j=2}^{k}|y-x_{j}|^{1-\min\{\alpha,1\}} e^{-\min\{\alpha,1\}|y-x_{j}|}\Big)\\ &=\frac{U^{\alpha}(y-x_{1})}{V_{\mu}(y-x_{1})}+O\big(e^{-\frac{\min\{\alpha,1\}\rho}{3}}\big). \endaligned$$

Note that \(\frac {U^{\alpha }(y-x_{1})}{V_{\mu }(y-x_{1})}\to 0\) as \(|y-x_{1}|\to \infty \), then \(\frac {U^{\alpha }(y-x_{1})}{V_{\mu }(y-x_{1})}\) is bounded. This implies that \(\frac {\mathbb {U}_{r}^{\alpha }}{\mathbb {V}_{r,\mu }}\) is bounded in Ω1. By symmetry, \(\frac {\mathbb {U}_{r}^{\alpha }}{\mathbb {V}_{r,\mu }}\) is bounded in \(\mathbb {R}^{3}\). □

Lemma A.4

For any 0 < μ ≤ 1, there exists a 0 < 𝜃μ < 1 such that

$$ \begin{array}{@{}rcl@{}} {\Phi}_{\mathbb{U}_{r}^{\mu}}(y)=\Big[\frac{a}{r^{m}}+O\Big(\frac{1}{r^{m+\theta_{\mu}}}\Big)\Big]\sum\limits_{j=1}^{k} V_{\mu}(y-x_{j}). \end{array} $$
(A.3)

Proof

Direct computation shows that

$$\aligned &{\int}_{{\Omega}_{j}}\frac{K(|x|)}{|y-x|}\mathbb{U}_{r}^{2\mu}(x)dx\\ =&{\int}_{{\Omega}_{j}}\frac{K(|x|)}{|y-x|}\Big(U(y-x_{j})+O\Big(e^{-\frac{\rho}{4}}e^{-\frac{|x-x_{j}|}{2}}\Big)\Big) ^{2\mu}dx\\ =&\Big({\int}_{{\Omega}_{j}\cap B_{\frac{r}{2}}(x_{j})}+{\int}_{{\Omega}_{j}\setminus B_{\frac{r}{2}}(x_{j})}\Big) \frac{K(|x|)}{|y-x|}\Big[U^{2\mu}(x-x_{j})+O\Big(e^{-\frac{\mu\rho}{4}}e^{-\frac{3\mu|x-x_{j}|}{2}} +e^{-\frac{\mu\rho}{2}}e^{-\mu|x-x_{j}|}\Big)\Big]dx. \endaligned$$

From the fact that for any α > 0,

$$ \frac{1}{|x+x_{j}|^{\alpha}}=\frac{1}{|x_{j}|^{\alpha}}\left[1+O\left( \frac{|x|}{|x_{j}|}\right)\right], ~~~x\in B_{\frac{r}{2}}(0), $$

we have

$$\aligned &{\int}_{{\Omega}_{j}\cap B_{\frac{r}{2}}(x_{j})}\frac{K(|x|)}{|y-x|}U^{2\mu}(x-x_{j})dx\\ =&{\int}_{({\Omega}_{j}-x_{j})\cap B_{\frac{r}{2}}(0)}\frac{K(|x+x_{j}|)}{|y-x_{j}-x|}U^{2\mu}(x)dx\\ =&{\int}_{({\Omega}_{j}-x_{j})\cap B_{\frac{r}{2}}(0)}\Big[\frac{a}{|x+x_{j}|^{m}} +O\Big(\frac{1}{|x+x_{j}|^{m+\theta}}\Big)\Big]\frac{U^{2\mu}(x)}{|y-x_{j}-x|}dx\\ =&\frac{a}{r^{m}}{\int}_{({\Omega}_{j}-x_{j})\cap B_{\frac{r}{2}}(0)} \Big[1+O\Big(\frac{|x|}{|x_{j}|}\Big)\Big]\frac{U^{2\mu}(x)}{|y-x_{j}-x|}dx +O\Big(\frac{V_{\mu}(y-x_{j})}{r^{m+\theta}}\Big)\\ =&\frac{a}{r^{m}}{\int}_{\mathbb{R}^{3}}\Big[1+O\Big(\frac{|x|}{|x_{j}|}\Big)\Big]\frac{U^{2\mu}(x)}{|y-x_{j}-x|}dx +O\Big(\frac{e^{-\frac{\mu r}{2}}V_{\frac{\mu}{2}}(y-x_{j})}{r^{m}}+\frac{V_{\mu}(y-x_{j})}{r^{m+\theta}}\Big)\\ =&\frac{a}{r^{m}}V_{\mu}(y-x_{j})+O\Big(\frac{1}{r^{m+1}}{\int}_{\mathbb{R}^{3}}\frac{|x|U^{2\mu}(x)}{|y-x_{j}-x|}dx +\frac{V_{\mu}(y-x_{j})}{r^{m+\theta}}\Big)\\ =&\Big[\frac{a}{r^{m}}+O\Big(\frac{1}{r^{m+\theta}}\Big)\Big]V_{\mu}(y-x_{j}). \endaligned$$

A similar argument implies that

$$ {\int}_{{\Omega}_{j}\setminus B_{\frac{r}{2}}(x_{j})}\frac{K(|x|)}{|y-x|}U^{2\mu}(x-x_{j})dx\leq Ce^{-\frac{\mu r}{2}}V_{\frac{\mu}{2}}(y-x_{j})\leq \frac{C}{r^{m+\theta}}V_{\mu}(y-x_{j}), $$
$$ {\int}_{{\Omega}_{j}}\frac{K(|x|)}{|y-x|}\Big(e^{-\frac{\mu\rho}{4}}e^{-\frac{3\mu|x-x_{j}|}{2}} +e^{-\frac{\mu\rho}{2}}e^{-\mu|x-x_{j}|}\Big)\leq\frac{C}{r^{m+\theta(\mu)}}V_{\mu}(y-x_{j}),~~~ 0<\theta(\mu)<1. $$

Then there exists a 0 < 𝜃μ < 1 such that

$$ {\int}_{{\Omega}_{j}}\frac{K(|x|)}{|y-x|}\mathbb{U}_{r}^{2\mu}(x)dx =\Big[\frac{a}{r^{m}}+O\Big(\frac{1}{r^{m+\theta_{\mu}}}\Big)\Big]V_{\mu}(y-x_{j}). $$

It follows that

$$ {\int}_{\mathbb{R}^{3}}\frac{K(|x|)}{|y-x|}\mathbb{U}_{r}^{2\mu}(x)dx =\sum\limits_{j=1}^{k}{\int}_{{\Omega}_{j}}\frac{K(|x|)}{|y-x|}\mathbb{U}_{r}^{2\mu}(x)dx =\Big[\frac{a}{r^{m}}+O\Big(\frac{1}{r^{m+\theta_{\mu}}}\Big)\Big]\sum\limits_{j=1}^{k}V_{\mu}(y-x_{j}). $$

Thus (A.3) holds and we finish the proof of this lemma. □

Remark A.5

By Lemma A.4, there exists a constant Cμ > 0 such that

$$ |{\Phi}_{\mathbb{U}^{\mu}_{r}}|\leq \frac{C_{\mu}}{r^{m}}. $$

Proposition A.6

There exists a small positive number σ > 0 such that

$$ \begin{array}{@{}rcl@{}} I(\mathbb{U}_{r}) =k\left( A+\frac{a^{2}(B_{1}+B_{k}(r))}{r^{2m}}-\frac{B_{2}}{r^{n}}-B_{3}\left( \frac{r}{k}\right)^{-1}e^{-\frac{2\pi r}{k}}+O\left( \frac{1}{r^{2m+\sigma}}+\frac{1}{r^{n+\sigma}}\right)\right), \end{array} $$

where I is defined as in (2.1),

$$ A = \left( \frac{1}{2} - \frac{1}{p+1}\right)\!{\int}_{\mathbb{R}^{3}}U^{p+1},~~~B_{1} = \frac{1}{4}{\int}_{\mathbb{R}^{3}}{\int}_{\mathbb{R}^{3}}\frac{U^{2}(x)U^{2}(y)}{|y-x|}dxdy,~~B_{2} = \frac{b}{p+1}{\int}_{\mathbb{R}^{3}}U^{p+1}, $$

B3 > 0 is a positive constant and Bk(r) is a function satisfying

$$ 0<B_{k}(r)<\frac{Ck\ln k}{r}{\int}_{\mathbb{R}^{3}}U^{2}. $$

Proof

Clearly,

$$\aligned I(\mathbb{U}_{r})&=\frac 12 {\int}_{\mathbb{R}^{3}} (|\nabla\mathbb{U}_{r}|^{2} +\mathbb{U}_{r}^{2})-\frac{1}{p+1}{\int}_{\mathbb{R}^{3}}Q(|y|)\mathbb{U}_{r}^{p+1}+\frac{1}{4}{\int}_{\mathbb{R}^{3}} K(|y|){\Phi}_{\mathbb{U}_{r}}\mathbb{U}_{r}^{2}\\ &=\frac 12 {\int}_{\mathbb{R}^{3}} (|\nabla\mathbb{U}_{r}|^{2} +\mathbb{U}_{r}^{2})-\frac{1}{p+1}{\int}_{\mathbb{R}^{3}}\mathbb{U}_{r}^{p+1}\\ &\quad+\frac{1}{p+1}{\int}_{\mathbb{R}^{3}}\left( 1-Q(|y|)\right)\mathbb{U}_{r}^{p+1} +\frac{1}{4}{\int}_{\mathbb{R}^{3}} K(|y|){\Phi}_{\mathbb{U}_{r}}\mathbb{U}_{r}^{2}\\ :&=I_{1}+I_{2}+I_{3}. \endaligned $$

For I1, the symmetry gives that

$$ \aligned I_{1}&=\frac 12 {\int}_{\mathbb{R}^{3}}\Big[\sum\limits_{j=1}^{k}U^{p}(y-x_{j})\Big]\mathbb{U}_{r} -\frac{1}{p+1}{\int}_{\mathbb{R}^{3}}\mathbb{U}_{r}^{p+1}\\ &=\frac{k}{2} {\int}_{\mathbb{R}^{3}}U^{p+1}+\frac{k}{2}\sum\limits_{i=2}^{k}{\int}_{\mathbb{R}^{3}}U^{p}(y-x_{1})U(y-x_{i}) -\frac{k}{p+1}{\int}_{{\Omega}_{1}}\mathbb{U}_{r}^{p+1}\\ &=k\left( \frac{1}{2}{\int}_{\mathbb{R}^{3}}U^{p+1}-\frac{1}{2}\sum\limits_{i=2}^{k}{\int}_{\mathbb{R}^{3}}U^{p}(y-x_{1}) U(y-x_{i})-\frac{1}{p+1}{\int}_{\mathbb{R}^{3}}U^{p+1}+O\left( e^{-(1+\sigma)\rho}\right)\right)\\ &=k\Big(A-\Big(\frac{1}{2}+o(1)\Big)\sum\limits_{i=2}^{k}U(|x_{1}-x_{i}|)+O\left( e^{-(1+\sigma)\rho}\right)\Big), \endaligned $$
(A.4)

where 0 < σ < 1. Here we use the estimation:

$$ \begin{array}{@{}rcl@{}} \frac{1}{p+1}{\int}_{{\Omega}_{1}}\mathbb{U}^{p+1}_{r}&=&\frac{1}{p+1}{\int}_{{\Omega}_{1}}U^{p+1}(y-x_{1})dy +{\sum}_{j=2}^{k}{\int}_{{\Omega}_{1}}U^{p}(y-x_{1})U(y-x_{j})dy\\ &&+O\Big({\int}_{{\Omega}_{1}}U^{p-1}(y - x_{1})\Big({\sum}_{j=2}^{k}U(y - x_{j})\Big)^{2}dy + {\int}_{{\Omega}_{1}} \Big({\sum}_{j=2}^{k}U(y-x_{j})\Big)^{p+1}dy\Big)\\ &=&\frac{1}{p+1}{\int}_{\mathbb{R}^{3}}U^{p+1}(y-x_{1})dy +{\sum}_{j=2}^{k}{\int}_{\mathbb{R}^{3}}U^{p}(y-x_{1})U(y-x_{j})dy+O(e^{-(1+\sigma)\rho}). \end{array} $$

Next, we estimate I2:

$$ \begin{array}{@{}rcl@{}} &&{\int}_{\mathbb{R}^{3}} \big(1-Q(|y|)\big)\mathbb{U}_{r}^{p+1}\\ &&\quad=k\left( {\int}_{\mathbb{R}^{3}}\big(1-Q(|y|)\big)U^{p+1}(y-x_{1})+(p+1){\sum}_{i=2}^{k}{\int}_{\mathbb{R}^{3}} \big(1-Q(|y|)\big)U^{p}(y-x_{1})U(y-x_{i})+O\left( e^{-(1+\sigma)\rho}\right)\right)\\ &&\quad=k\left( -\frac{b}{r^{n}}{\int}_{\mathbb{R}^{3}}U^{p+1}+O\left( e^{-(1+\sigma)\rho}+\frac{1}{r^{n+\kappa}}\right) \right)\\ &&\quad=k\left( -\frac{(p+1)B_{2}}{r^{n}}+O\left( e^{-(1+\sigma)\rho}+\frac{1}{r^{n+\kappa}}\right)\right), \end{array} $$

where 0 < κε. It is easy to see that

$$ I_{2}=\frac{1}{p+1}{\int}_{\mathbb{R}^{3}}\left( 1-Q(|y|)\right)\mathbb{U}_{r}^{p+1}=k\left( -\frac{B_{2}}{r^{n}} +O\left( e^{-(1+\sigma)\rho}+\frac{1}{r^{n+\kappa}}\right)\right). $$
(A.5)

Finally, we claim that

$$ \aligned I_{3}=\frac{k}{4} \left( \frac{a^{2}}{r^{2m}}\left( 4B_{1}+\sum\limits_{j=2}^{k}V_{1}(x_{j}-x_{1}){\int}_{\mathbb{R}^{3}}U^{2}\right) +O\left( \frac{1}{r^{2m+\sigma}}\right)\right). \endaligned $$
(A.6)

Note that

$$ \begin{array}{@{}rcl@{}} &&{\int}_{\mathbb{R}^{3}} K(|y|){\Phi}_{\mathbb{U}_{r}}\mathbb{U}_{r}^{2}=k{\int}_{{\Omega}_{1}} K(|y|){\Phi}_{\mathbb{U}_{r}}\mathbb{U}_{r}^{2}\\ &&\quad=k{\int}_{{\Omega}_{1}}K(|y|)\left( \frac{a}{r^{m}}{\sum}_{j=1}^{k}V_{1}(y-x_{j})+O\left( \frac{1}{r^{m+\theta}} {\sum}_{j=1}^{k}\frac{1}{1+|y-x_{j}|}\right)\right)\left( U_{1}+O\left( \frac{1}{r^{\sigma}} e^{-\frac{1}{2}|y-x_{1}|}\right)\right)^{2}\\ &&\quad=k\left[\frac{a}{r^{m}}{\int}_{{\Omega}_{1}}K(|y|){\sum}_{j=1}^{k}V_{1}(y-x_{j}){U_{1}^{2}}+O\left( \frac{1} {r^{m+\sigma}}{\int}_{\mathbb{R}^{3}}K(|y|){\sum}_{j=1}^{k}\frac{e^{-|y-x_{1}|}}{1+|y-x_{j}|}\right)\right]\\ &&\qquad+kO\left( \frac{1}{r^{m+\theta}}{\int}_{{\Omega}_{1}}K(|y|){\sum}_{j=1}^{k}\frac{{U_{1}^{2}}}{1+|y-x_{j}|} \right)\\ &&\quad=k\left( \frac{a^{2}}{r^{2m}}\left( {\int}_{\mathbb{R}^{3}}U^{2}V_{1}+{\sum}_{j=2}^{k}V_{1}(x_{j}-x_{1}) {\int}_{\mathbb{R}^{3}}U^{2}\right)+O\left( \frac{1}{r^{2m+\sigma}} \left( 1+{\sum}_{j=2}^{k}\frac{1}{|x_{j}-x_{1}|}\right)\right)\right). \end{array} $$

Since

$$ {\int}_{\mathbb{R}^{3}}U^{2}V_{1}=4B_{1} $$

and

$$ \sum\limits_{j=2}^{k}V_{1}(x_{j}-x_{1})\leq C\sum\limits_{j=2}^{k}\frac{1}{|x_{j}-x_{1}|}\leq C\frac{k}{r}\sum\limits_{j=2}^{k}\frac{1}{j}\leq \frac{Ck\ln k}{r}\leq C^{\prime}. $$

Combining (A.4), (A.5) and (A.6), we yield that

$$ \begin{array}{@{}rcl@{}} I(\mathbb{U}_{r}) &=k\left( A+\frac{a^{2}}{r^{2m}}\left( B_{1}+\frac{1}{4}\sum\limits_{j=2}^{k}V_{1}(x_{j}-x_{1}){\int}_{\mathbb{R}^{3}}U^{2}\right)-\frac{B_{2}}{r^{n}}-B_{3}\left( \frac{r}{k}\right)^{-1}e^{-\frac{2\pi r}{k}}+O\left( \frac{1}{r^{2m+\sigma}}+\frac{1}{r^{n+\sigma}}\right)\right). \end{array} $$

Thus, we finish the proof. □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, K., Wang, L. Infinitely Many Solutions for the Nonlinear Schrödinger–Poisson System. J Dyn Control Syst 29, 1299–1322 (2023). https://doi.org/10.1007/s10883-022-09636-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09636-8

Keywords

Mathematics Subject Classification (2010)

Navigation