Skip to main content
Log in

Gevrey Properties and Summability of Formal Power Series Solutions of Some Inhomogeneous Linear Cauchy-Goursat Problems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this article, we investigate the Gevrey and summability properties of the formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems with analytic coefficients in a neighborhood of \((0,0)\in \mathbb {C}^{2}\). In particular, we give necessary and sufficient conditions under which these solutions are convergent or are k-summable, for a convenient positive rational number k, in a given direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We denote \(\widetilde {q}\) with a tilde to emphasize the possible divergence of the series \(\widetilde {q}\).

  2. See Remark 1.

  3. See Remark 5.

  4. In Appendix page 32, we present various results of the general theory of the Gevrey asymptotic expansions in the framework of the formal power series in \(\mathcal {O}(D_{\rho _2})[[t]]\).

  5. A subsector Σ of a sector Σ is said to be a proper subsector and one denotes Σ ⋐Σ if its closure in \(\mathbb {C}\) is contained in Σ∪{0}.

  6. Of course, this case occurs if and only if i < κ.

  7. This set makes sense since, thanks to Remark 9, we have \(Ii^{\ast }>\kappa -i^{\ast }\geqslant i-i^{\ast }\).

References

  1. Balser W. Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke. Pacific J Math 1999;188(1):53–63.

    Article  MathSciNet  MATH  Google Scholar 

  2. Balser W. Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. New-York: Springer; 2000.

    MATH  Google Scholar 

  3. Balser W. Multisummability of formal power series solutions of partial differential equations with constant coefficients. J Differential Equations 2004;201(1):63–74.

    Article  MathSciNet  MATH  Google Scholar 

  4. Balser W, Loday-Richaud M. Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables. Adv Dyn Syst Appl 2009;4 (2):159–177.

    MathSciNet  Google Scholar 

  5. Balser W, Miyake M. Summability of formal solutions of certain partial differential equations. Acta Sci Math (Szeged) 1999;65(3-4):543–551.

    MathSciNet  MATH  Google Scholar 

  6. Balser W, Yoshino M. Gevrey order of formal power series solutions of inhomogeneous partial differential equations with constant coefficients. Funkcial Ekvac 2010;53:411–434.

    Article  MathSciNet  MATH  Google Scholar 

  7. Canalis-Durand M, Ramis J-P, Schäfke R, Sibuya Y. Gevrey solutions of singularly perturbed differential equations. J Reine Angew Math 2000;518:95–129.

    MathSciNet  MATH  Google Scholar 

  8. Costin O, Park H, Takei Y. Borel summability of the heat equation with variable coefficients. J Differential Equations 2012;252(4):3076–3092.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hibino M. Borel summability of divergence solutions for singular first-order partial differential equations with variable coefficients. I & II. J Differential Equations 2006;227(2):499–563.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hibino M. On the summability of divergent power series solutions for certain first-order linear PDEs. Opuscula Math 2015;35(5):595–624.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ichinobe K. On k-summability of formal solutions for a class of partial differential operators with time dependent coefficients. J Differential Equations 2014;257(8):3048–3070.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lastra A, Malek S. On parametric Gevrey asymptotics for some nonlinear initial value Cauchy problems. J Differential Equations 2015;259:5220–5270.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lastra A, Malek S. On parametric multisummable formal solutions to some nonlinear initial value Cauchy problems. Adv Differ Equ 2015;2015:200.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lastra A, Malek S, Sanz J. On Gevrey solutions of threefold singular nonlinear partial differential equations. J Differential Equations 2013;255:3205–3232.

    Article  MathSciNet  MATH  Google Scholar 

  15. Loday-Richaud M. Stokes phenomenon, multisummability and differential Galois groups. Ann Inst Fourier (Grenoble) 1994;44(3):849–906.

    Article  MathSciNet  MATH  Google Scholar 

  16. Loday-Richaud M. Divergent Series, Summability and Resurgence II. Simple and Multiple Summability, vol 2154 of Lecture Notes in Math. Berlin: Springer; 2016.

    MATH  Google Scholar 

  17. Lutz DA, Miyake M, Schäfke R. On the Borel summability of divergent solutions of the heat equation. Nagoya Math J 1999;154:1–29.

    Article  MathSciNet  MATH  Google Scholar 

  18. Malek S. On the summability of formal solutions of linear partial differential equations. J Dyn Control Syst 2005;11(3):389–403.

    Article  MathSciNet  MATH  Google Scholar 

  19. Malek S. On singularly perturbed partial integro-differential equations with irregular singularity. J Dyn Control Syst 2007;13(3):419–449.

    Article  MathSciNet  MATH  Google Scholar 

  20. Malek S. On the summability of formal solutions of nonlinear partial differential equations with shrinkings. J Dyn Control Syst 2007;13(1):1–13.

    Article  MathSciNet  MATH  Google Scholar 

  21. Malek S. On the Stokes phenomenon for holomorphic solutions of integrodifferential equations with irregular singularity. J Dyn Control Syst 2008;14(3):371–408.

    Article  MathSciNet  MATH  Google Scholar 

  22. Malek S. On Gevrey functions solutions of partial differential equations with fuchsian and irregular singularities. J Dyn Control Syst 2009;15(2):277–305.

    Article  MathSciNet  MATH  Google Scholar 

  23. Malek S. On Gevrey asymptotic for some nonlinear integro-differential equations. J Dyn Control Syst 2010;16(3):377–406.

    Article  MathSciNet  MATH  Google Scholar 

  24. Malek S. On the summability of formal solutions for doubly singular nonlinear partial differential equations. J Dyn Control Syst 2012;18(1):45–82.

    Article  MathSciNet  MATH  Google Scholar 

  25. Malgrange B. Sommation des séries divergentes. Expo Math 1995;13:163–222.

    MATH  Google Scholar 

  26. Malgrange B, Ramis J-P. Fonctions multisommables. Ann Fourier (Grenoble) 1992;42:353–368.

    Article  MathSciNet  MATH  Google Scholar 

  27. Michalik S. Summability of divergent solutions of the n-dimensional heat equation. J Differential Equations 2006;229:353–366.

    Article  MathSciNet  MATH  Google Scholar 

  28. Michalik S. On the multisummability of divergent solutions of linear partial differential equations with constant coefficients. J Differential Equations 2010;249:551–570.

    Article  MathSciNet  MATH  Google Scholar 

  29. Michalik S. Summability and fractional linear partial differential equations. J Control Syst 2010;16(4):557–584.

    Article  MathSciNet  MATH  Google Scholar 

  30. Michalik S. Multisummability of formal solutions of inhomogeneous linear partial differential equations with constant coefficients. J Dyn Control Syst 2012;18(1):103–133.

    Article  MathSciNet  MATH  Google Scholar 

  31. Michalik S. Corrigendum to “On the multisummability of divergent solutions of linear partial differential equations with constant coefficients” [j. differential equations 249 (3) (2010) 551-570]. J Differential Equations 2013;255:2400–2401.

    Article  MathSciNet  MATH  Google Scholar 

  32. Miyake M. Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type equations. J Math Soc Newton Japan 1991;43(2):305–330.

    Article  MathSciNet  MATH  Google Scholar 

  33. Miyake M. Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations. Partial differential equations and their applications (Wuhan, 1999). River Edge: World Sci. Publ.; 1999. p. 225–239.

  34. Miyake M, Hashimoto Y. Newton polygons and Gevrey indices for linear partial differential operators. Nagoya Math J 1992;128:15–47.

    Article  MathSciNet  MATH  Google Scholar 

  35. Nagumo M. ÜBer das Anfangswertproblem partieller Differentialgleichungen. Jap J Math 1942;18:41–47.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ouchi S. Multisummability of formal solutions of some linear partial differential equations. J Differential Equations 2002;185(2):513–549.

    Article  MathSciNet  MATH  Google Scholar 

  37. Ouchi S. Borel summability of formal solutions of some first order singular partial differential equations and normal forms of vector fields. J Math Soc Japan 2005;57(2): 415–460.

    Article  MathSciNet  MATH  Google Scholar 

  38. Pliś ME, Ziemian B. Borel resummation of formal solutions to nonlinear L,aplace equations in 2 variables. Ann Polon Math 1997;67(1):31–41.

    Article  MathSciNet  MATH  Google Scholar 

  39. Ramis J-P. Dévissage Gevrey. Astérisque Soc Math France, Paris 1978;59-60: 173–204.

    MATH  Google Scholar 

  40. Ramis J-P. Les séries k-sommables et leurs applications. Complex analysis, microlocal calculus and relativistic quantum theory (Proc Internat Colloq, Centre Phys, Les Houches, 1979), vol 126 of Lecture Notes in Phys. Berlin: Springer; 1980. p. 178–199.

  41. Ramis J-P. Théorèmes d’indices Gevrey pour les équations différentielles ordinaires. Mem Amer Math Soc 1984;48:viii+ 95.

    MATH  Google Scholar 

  42. Remy P. Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients. J Dyn Gevrey Control Syst 2016;22(4):693–711.

    Article  MathSciNet  MATH  Google Scholar 

  43. Remy P. Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients. J Dyn Gevrey Control Syst 2017;23(4):853–878.

    Article  MathSciNet  MATH  Google Scholar 

  44. Tahara H, Yamazawa H. Multisummability of formal solutions to the C,auchy problem for some linear partial differential equations. J Differential Equations 2013;255 (10):3592–3637.

    Article  MathSciNet  MATH  Google Scholar 

  45. Yonemura A. Newton polygons and formal Gevrey classes. Publ Res Inst Math Newton Sci 1990;26:197–204.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Remy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:: Gevrey asymptotic

Appendix:: Gevrey asymptotic

In this IAppendix, we present various results of the general theory of the Gevrey asymptotic expansions in the framework of the formal power series in \(\mathcal {O}(D_{\rho _2})[[t]]\).

1.1 s-Gevrey asymptotic

Still considering t as the variable and x as a parameter, one extends, in the similar way as the s-Gevrey formal series (see Definition 2), the classical notion of Gevrey asymptotic to a formal series in \(\mathbb {C}[[t]]\) to the one of Gevrey asymptotic to a formal series in \(\mathcal {O}(D_{\rho _{2}})[[t]]\) in requiring similar conditions, the estimates being however uniform with respect to x.

Definition 5 (s-Gevrey asymptotic)

Let \(s\geqslant 0\) and Σ be an open sector with vertex \(0\in \mathbb {C}\). A function u(t, x) holomorphic on a domain Σ × Dρ for some ρ > 0 is said to be Gevrey asymptotic of order s (in short, s-Gevrey asymptotic) to a formal series\(\displaystyle {\sum }_{j\geqslant 0}u_{j,\ast }(x)\frac {t^{j}}{j!}\in \mathcal {O}(D_{\rho _{2}})[[t]]\)on Σ if there exists 0 < r2 < min(ρ, ρ2) such that, for any proper subsector Σ ⋐ Σ, there exist two positive constants C > 0 and K > 0 such that, for all \(J\geqslant 1\) and all t ∈Σ:

$$ \sup_{|x|\leqslant r_{2}}\left\vert u(t,x)-{\sum}_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}\right\vert\leqslant CK^{J}{\Gamma}(1+sJ \null)\left\vert t\right\vert^{J}. $$
(1)

A series which is the s-Gevrey asymptotic expansion of a function is said to be an s-Gevrey asymptotic series on Σ.

Remark 12

If any exists, the s-Gevrey asymptotic series is unique.

Proposition 7

Let\(s\geqslant 0\)be.Then, a s-Gevrey asymptotic series on a sectorΣ is a s-Gevrey series.

Proof

Let \(\widetilde {u}(t,x)=\displaystyle {\sum }_{j\geqslant 0}u_{j,\ast }(x)\frac {t^{j}}{j!}\in \mathcal {O}(D_{\rho _{2}})[[t]]\) be a s-Gevrey asymptotic series of a function u(t, x) on Σ. We want to prove that there exist positive constants \(0<r_{2}^{\prime \prime }<\rho _{2}\), C > 0 and K > 0 such that, for all \(J\geqslant 0\),

$$ \sup_{\left\vert x\right\vert\leqslant r_{2}^{\prime\prime}}\left\vert u_{J,\ast}(x)\right\vert\leqslant C^{\prime\prime}K^{{\prime\prime}J}{\Gamma}(1+(s + 1)J \null). $$
(2)

Let r2 > 0 be as in Definition 5 and let us choose Σ ⋐ Σ a proper subsector of Σ. For any \(J\geqslant 1\), we derive from condition (1) applied twice to the relation

$$u_{J,\ast}(x)\frac{t^{J}}{J!}=\left( u(t,x)-{\sum}_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}\right)-\left( u(t,x)-{\sum}_{j = 0}^{J}u_{j,\ast}(x)\frac{t^{j}}{j!}\right) $$

the following inequality

$$\sup_{\left\vert x\right\vert\leqslant r_{2}}\left\vert u_{J,\ast}(x)\right\vert\leqslant CK^{J}{\Gamma}(1+sJ \null)J!+CK^{J + 1}{\Gamma}(1+s(J + 1) \null)J!R, $$

where R > 0 denotes the radius of Σ. Applying then the relation between the Gamma and the Beta functions to Γ(1 + sJ)J! = Γ(1 + sJ)Γ(1 + J), we get

$${\Gamma}(1+sJ \null)J!={\Gamma}(2+(s + 1)J){{\int}_{0}^{1}}t^{sJ}(1-t)^{J}dt\leqslant{\Gamma}(2+(s + 1)J); $$

hence, the inequalities

$${\Gamma}(1+sJ \null)J!\leqslant(1+(s + 1)J){\Gamma}(1+(s + 1)J \null)\leqslant e\left( e^{s + 1}\right)^{J}{\Gamma}(1+(s + 1)J \null). $$

In the same way, and using besides the increase of the Gamma function on [2, + [, we have

$${\Gamma}(1+s(J + 1))J!\leqslant{\Gamma}(2+(s + 1)J+s)\leqslant{\Gamma}(2+(s + 1)J+S), $$

where S is an integer \(\geqslant s\); hence,

$${\Gamma}(1+s(J + 1))J!\leqslant{\Gamma}(1+(s + 1)J \null){\prod}_{\ell= 1}^{S + 1}((s + 1)J+\ell)\leqslant AB^{J}{\Gamma}(1+(s + 1)J \null) $$

with convenient constants A, B > 0 independent of J. Consequently, there exist C, K > 0 such that the following inequalities

$$\sup_{\left\vert x\right\vert\leqslant r_{2}}\left\vert u_{J,\ast}(x)\right\vert\leqslant C^{\prime}K^{{\prime}J}{\Gamma}(1+(s + 1)J \null) $$

hold for all \(J\geqslant 1\). Condition (2) follows then by choosing

$$r_{2}^{\prime\prime}=r_{2}\text{, }C^{\prime\prime}=\max\left( C^{\prime},\sup_{\left\vert x\right\vert\leqslant r_{2}}\left\vert u_{0,\ast}(x)\right\vert\right)\text{ and }K^{\prime\prime}=K^{\prime}.$$

This ends the proof. □

Following Proposition 8 gives us a characterization of the s-Gevrey asymptotic in terms of conditions on the successive derivatives \({\partial _{t}^{J}} u\) of the function u with respect to t.

Proposition 8

Let\(s\geqslant 0\)andΣ be an open sectorwith vertex\(0\in \mathbb {C}\). Then, afunctionu(t, x) holomorphicon a domain Σ × Dρfor someρ > 0 is s-Gevrey asymptoticto a formal series\(\widetilde {u}(t,x)=\displaystyle {\sum }_{j\geqslant 0}u_{j,\ast }(x)\frac {t^{j}}{j!}\in \mathcal {O}(D_{\rho _{2}})[[t]]\)onΣ if and onlyif there exists 0 < r2 < min(ρ, ρ2) such that

  1. 1.

    For any |x| ≤ r2,the maptu(t, x) has\(\widetilde {u}(t,x)\)asTaylor series at 0 on Σ,

  2. 2.

    For any proper subsector Σ ⋐ Σ,there exist two positive constantsC > 0 andK > 0 such that,for all\(J\geqslant 0\)and allt ∈Σ,

    $$\sup_{\left\vert x\right\vert\leqslant r_{2}}\left\vert{\partial_{t}^{J}}u(t,x)\right\vert\leqslant CK^{J}{\Gamma}(1+(s + 1)J \null). $$

Proof

⊲ Necessary condition. Let us suppose that u(t, x) is s-Gevrey asymptotic to \(\widetilde {u}(t,x)\) on Σ and let us prove Conditions 1 and 2 of Proposition 8.

Due to Definition 5, Condition 1 is straightforward. To prove Condition 2, we consider 0 < r2 < min(ρ, ρ2) as in Definition 5 and a proper subsector Σ ⋐ Σ and we choose a radius \(0<r_{2}^{\prime }<r_{2}\), a sector Σ such that Σ ⋐ Σ ⋐ Σ and a positive constant δ > 0 small enough so that, for all t ∈Σ, the closed disc centered at t with radius |t|δ be contained in Σ. Then, the Cauchy integral formula implies

$$\begin{array}{@{}rcl@{}} {\partial_{t}^{J}}u(t,x)&=&\frac{J!}{(2i\pi)^{2}}\underset{\left\vert x^{\prime}-x\right\vert=r_{2}-r_{2}^{\prime}}{{\int}_{\left\vert t^{\prime}-t\right\vert=\left\vert t\right\vert\delta}}\frac{u(t^{\prime},x^{\prime})}{(t^{\prime}-t)^{J + 1}(x^{\prime}-x)}dt^{\prime}dx^{\prime}\\ &=&\frac{J!}{(2i\pi)^{2}}\underset{\left\vert x^{\prime}-x\right\vert=r_{2}-r_{2}^{\prime}}{{\int}_{\left\vert t^{\prime}-t\right\vert=\left\vert t\right\vert\delta}}\left( u(t^{\prime},x^{\prime})-{\sum}_{j = 0}^{J-1}u_{j,\ast}(x^{\prime})\frac{t^{\prime j}}{j!}\right)\frac{dt^{\prime}dx^{\prime}}{(t^{\prime}-t)^{J + 1}(x^{\prime}-x)} \end{array} $$

for all \(J\geqslant 0\), all t ∈Σ and all \(\left \vert x\right \vert \leqslant r_{2}^{\prime }\). Indeed, the sum is 0 when J = 0 and the J-th derivative of a polynomial of degree J − 1 is 0 too when \(J\geqslant 1\). Hence,

$$\begin{array}{@{}rcl@{}} \left\vert{\partial_{t}^{J}}u(t,x)\right\vert&\leqslant& CK^{J}{\Gamma}(1+sJ \null)J!\frac{\left\vert t\right\vert^{J}(1+\delta)^{J}}{\left\vert t\right\vert^{J}\delta^{J}}\\ &\leqslant& C^{\prime}K^{{\prime}J}{\Gamma}(1+(s + 1)J \null) \end{array} $$

with C = eC and \(K^{\prime }=e^{s + 1}K\left (1+\frac {1}{\delta }\right )\). Indeed, we have previously seen in the proof of Proposition 7 that Γ(1 + sJ)J! ≤ e1+(s+ 1)JΓ(1 + (s + 1)J). This proves Condition 2 and, consequently, the necessary condition.⊲ Sufficient condition. Let us now suppose that Conditions 1 and 2 are satisfied and let us prove condition (1) of Definition 5. To do that, let us consider a proper subsector Σ ⋐ Σ.

For any fixed |x| ≤ r2, the map tu(t, x) admits the Taylor expansion with integral remainder

$$ u(t,x)-\sum\limits_{j = 0}^{J-1}\frac{\partial^{j} u}{\partial t^{j}}(t_{0},x)\frac{(t-t_{0})^{j}}{j!}={\int}_{t_{0}}^{t}\frac{(t-t^{\prime})^{J-1}}{(J-1)!}\frac{\partial^{J} u}{\partial t^{J}}(t^{\prime},x)dt^{\prime} $$
(3)

for all \(J\geqslant 1\), all t ∈Σ and all t0 ∈Σ. Due to Condition 1, \(\underset {t_{0}\in {\Sigma }^{\prime }}{\underset {t_{0}\rightarrow 0}{\lim }} \frac {\partial ^{j} u}{\partial t^{j}}(t_{0},x)\) exists for all \(j\geqslant 0\) and is equal to uj,∗(x). Therefore, the limits of the left-hand and of the right-hand sides of (3) both exist when t0 → 0 and we have

$$u(t,x)-{\sum}_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}={{\int}_{0}^{t}}\frac{(t-t^{\prime})^{J-1}}{(J-1)!}\frac{\partial^{J} u}{\partial t^{J}}(t^{\prime},x)dt^{\prime} $$

for all \(J\geqslant 1\), all t ∈Σ and all |x| ≤ r2. Hence, applying Condition 2:

$$\sup_{\left\vert x\right\vert\leqslant r_{2}}\left\vert u(t,x)-\sum\limits_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}\right\vert\leqslant \underset{\left\vert x\right\vert\leqslant r_{2}}{\underset{t^{\prime}\in{\Sigma}^{\prime}}{\sup}} \left\vert\frac{\partial^{J} u}{\partial t^{J}}(t^{\prime},x)\right\vert\frac{\left\vert t\right\vert^{J}}{J!}\leqslant CK^{J}\frac{{\Gamma}(1+(s + 1)J \null)}{J!}\left\vert t\right\vert^{J} $$

for all \(J\geqslant 1\) and all t ∈Σ. Condition (3) follows then from the inequality

$$\frac{{\Gamma}(1+(s + 1)J \null)}{J!}\leqslant 2^{(S + 1)J}{\Gamma}(1+sJ \null)\quad,S\in\mathbb N,S\geqslant s $$

which stems from the relations

$${\Gamma}(1+(s + 1)J \null)={\Gamma}(1+sj \null){\prod}_{j = 1}^{J}(sJ+j)\leqslant{\Gamma}(1+sJ \null){\prod}_{j = 1}^{J}(SJ+j) $$

and

$$\frac{\displaystyle{\prod}_{j = 1}^{J}(SJ+j)}{J!}=\left( \begin{array}{c}(S + 1)J\\J \end{array}\right)\leqslant\sum\limits_{k = 0}^{(S + 1)J}\left( \begin{array}{c}(S + 1)J\\k \end{array}\right)= 2^{(S + 1)J}. $$

This proves the sufficient condition; hence, Proposition 8. □

In the sequel, we denote by

  • \(\overline {\mathcal {A}}_{s}({\Sigma }, D_{\rho _{2}})\) the set of all the functions which are s-Gevrey asymptotic on Σ to a formal series of \(\mathcal {O}(D_{\rho _{2}})[[t]]\);

  • \(T_{s;{\Sigma },D_{\rho _{2}}}:\overline {\mathcal {A}}_{s}({\Sigma }, D_{\rho _{2}})\longrightarrow \mathcal {O}(D_{\rho _{2}})[[t]]_{s}\) the map which assigns to each \(u(t,x)\in \overline {\mathcal {A}}_{s}({\Sigma }, D_{\rho _{2}})\) its s-Gevrey asymptotic series.

Observe that \(T_{s;{\Sigma },D_{\rho _{2}}}\) is well-defined due to Remark 12 and Proposition 8. Following Proposition 9 specifies the algebraic properties of \(\overline {\mathcal {A}}_{s}({\Sigma }, D_{\rho _{2}})\) and \(T_{s;{\Sigma },D_{\rho _{2}}}\).

Proposition 9

Let\(s\geqslant 0\)andΣ be an open sectorwith vertex\(0\in \mathbb {C}\).

  1. 1.

    \((\overline {\mathcal {A}}_{s}({\Sigma }, D_{\rho _{2}}),\partial _{t},\partial _{x})\)isa\(\mathbb {C}\)-differentialalgebra stable under the anti-derivations\(\partial _{t}^{-1}\)and\(\partial _{x}^{-1}\).

  2. 2.

    The map\(T_{s;{\Sigma },D_{\rho _{2}}}:\overline {\mathcal {A}}_{s}({\Sigma }, D_{\rho _{2}})\longrightarrow \mathcal {O}(D_{\rho _{2}})[[t]]_{s}\)isa homomorphism of\(\mathbb {C}\)-differentialalgebras for the derivationstandx.Moreover, it commutes with the anti-derivations\(\partial _{t}^{-1}\)and\(\partial _{x}^{-1}\).

Proof

The proof is the same that the one given in [43, Prop. 2]. □

1.2 The s-Gevrey Borel-Ritt Theorem

Theorem 4

Supposing that Σ has openingπs.Then, the map\(T_{s;{\Sigma },D_{\rho _{2}}}\)isonto.

Proof

It is sufficient to consider a sector Σ with opening πs. Moreover, by means of a rotation, we can besides assume that Σ is bisected by the direction 𝜃 = 0. We denote by R its radius.

  • Let \(\widetilde {u}(t,x)=\displaystyle {\sum }_{j\geqslant 0}u_{j,\ast }(x)\frac {t^{j}}{j!}\in \mathcal {O}(D_{\rho _{2}})[[t]]_{s}\) a s-Gevrey formal series. By assumption, the coefficients uj,∗(x) satisfy the following two conditions:

    • \(u_{j,\ast }(x)\in \mathcal {O}(D_{\rho _{2}})\) for all \(j\geqslant 0\),

    • There exist 0 < r2 < ρ2, C > 0 and K > 0 such that |uj,∗(x)| ≤ CKjΓ(1 + (s + 1)j) for all \(j\geqslant 0\) and |x|≤ r2.

    Therefore, the series \(\widehat {u}(\tau ,x)=\displaystyle {\sum }_{j\geqslant 0}\frac {u_{j,\ast }(x)\tau ^{j}}{{\Gamma }(1+sj)j!}\) converges for all \((\tau ,x)\in D_{\rho }\times D_{r_{2}}\), where ρ is the radius of convergence of \(\displaystyle {\sum }_{j\geqslant 0}\frac {{\Gamma }(1+(s + 1)j)}{{\Gamma }(1+sj)j!}(K\tau )^{j}\).

  • Let us now fix bDρ, b > 0, and let us consider the holomorphic function \(u(t,x)\in \mathcal {O}({\Sigma }\times D_{r_{2}})\) defined by

    $$u(t,x)=t^{-k}{\int}_{0}^{b^{k}}\widehat{u}(\xi^{s},x)e^{-\xi/t^{k}}d\xi\text{, where }s=\frac{1}{k}\text{ and }\xi=\tau^{k}. $$

    We shall prove below that u(t, x) is s-Gevrey asymptotic to \(\widetilde {u}(t,x)\) on Σ.

  • Let \(0<r_{2}^{\prime }<r_{2}\). For any \(0<\delta <\frac {\pi }{2}\) and 0 < R < R, we denote by Σδ the proper subsector of Σ defined by

    $${\Sigma}_{\delta}=\left\{t\in\mathbb{C};\left\vert\arg(t)\right\vert<\frac{\pi}{2k}-\frac{\delta}{k}\text{ and }0<|t|<R^{\prime}\right\}. $$

Let \(J\geqslant 1\) and \((t,x)\in {\Sigma }_{\delta }\times \overline {D}_{r_{2}^{\prime }}\) be. From the relation

$$t^{j}=t^{-k}{\int}_{0}^{+\infty}\frac{\xi^{sj}}{{\Gamma}(1+sj)}e^{-\xi/t^{k}}d\xi\text{, }j\geqslant 0 $$

(see [2, pp. 78–79] for instance), we first have

$$\begin{array}{@{}rcl@{}} u(t,x)-\sum\limits_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}&=&t^{-k}{\int}_{0}^{b^{k}}\left( \sum\limits_{j\geqslant 0}\frac{u_{j,\ast}(x)}{{\Gamma}(1+sj)j!}\xi^{sj}e^{-\xi/t^{k}}\right)d\xi\\ &&-\sum\limits_{j = 0}^{J-1}\frac{u_{j,\ast}(x)}{j!}t^{-k}{\int}_{0}^{+\infty}\frac{\xi^{sj}}{{\Gamma}(1+sj)}e^{-\xi/t^{k}}d\xi. \end{array} $$

Since

$$t\in{\Sigma}_{\delta}\Rightarrow|\arg(t)|<\frac{\pi}{2}\Rightarrow\Re(t)>0\Rightarrow\left\vert\xi^{sj}e^{-\xi/t^{k}}\right\vert=|\xi|^{sj}e^{-\xi\frac{\Re(t^{k})}{|t|^{2k}}}\leqslant b^{j} $$

for all ξ ∈ [0, bk], the series \(\displaystyle {\sum }_{j\geqslant 0}\frac {u_{j,\ast }(x)}{{\Gamma }(1+sj)j!}\xi ^{sj}e^{-\xi /t^{k}}\) converges normally on [0, bk]. Therefore, we can permute the sum and the integral. Hence,

$$\begin{array}{@{}rcl@{}} u(t,x)-\sum\limits_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}&=&\sum\limits_{j\geqslant J}\frac{u_{j,\ast}(x)}{{\Gamma}(1+sj)j!}t^{-k}{\int}_{0}^{b^{k}}\xi^{sj}e^{-\xi/t^{k}}d\xi\\ &&-\sum\limits_{j = 0}^{J-1}\frac{u_{j,\ast}(x)}{{\Gamma}(1+sj)j!}t^{-k}{\int}_{b^{k}}^{+\infty}\xi^{sj}e^{-\xi/t^{k}}d\xi. \end{array} $$

Let us now observe that the inequalities (ξ/bk)sj ≤ (ξ/bk)Js hold both when ξbk and \(j\geqslant J\) and when \(\xi \geqslant b^{k}\) and j < J. This brings us then to the following:

$$\begin{array}{@{}rcl@{}} \left\vert u(t,x)-\sum\limits_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}\right\vert&\leqslant&\sum\limits_{j\geqslant J}\frac{b^{j-J}\left\vert u_{j,\ast}(x)\right\vert}{{\Gamma}(1+sj)j!}|t|^{-k}{\int}_{0}^{b^{k}}\xi^{sJ}e^{-\xi\Re(1/t^{k})}d\xi\\ &&+\sum\limits_{j = 0}^{J-1}\frac{ b^{j-J}\left\vert u_{j,\ast}(x)\right\vert}{{\Gamma}(1+sj)j!}|t|^{-k}{\int}_{b^{k}}^{+\infty}\xi^{sJ}e^{-\xi\Re(1/t^{k})}d\xi\\ &=&\sum\limits_{j\geqslant 0}\frac{ b^{j-J}\left\vert u_{j,\ast}(x)\right\vert}{{\Gamma}(1+sj)j!}|t|^{-k}{\int}_{0}^{+\infty}\xi^{sJ}e^{-\xi\Re(1/t^{k})}d\xi\\ &\leqslant&\sum\limits_{j\geqslant 0}\frac{ b^{j-J}\left\vert u_{j,\ast}(x)\right\vert}{{\Gamma}(1+sj)j!}|t|^{-k}{\int}_{0}^{+\infty}\xi^{sJ}e^{-\xi\sin(\delta)/|t|^{k})}d\xi. \end{array} $$

Observe that the last inequality stems from the fact that t ∈Σδ implies

$$\Re\left( \frac{1}{t^{k}}\right)=\frac{\cos\left( \arg(t^{k})\right)}{|t|^{k}}\geqslant \frac{\cos\left( \frac{\pi}{2}-\delta\right)}{|t|^{k}}=\frac{\sin(\delta)}{|t|^{k}}. $$

Setting then \(u=\frac {\xi \sin (\delta )}{|t|^{k}}\), we obtain

$$\begin{array}{@{}rcl@{}} \left\vert u(t,x)-\sum\limits_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}\right\vert &\leqslant&\sum\limits_{j\geqslant 0}\frac{ b^{j-J}\left\vert u_{j,\ast}(x)\right\vert|t|^{J}}{{\Gamma}(1+sj)j!(\sin(\delta))^{sJ+ 1}}{\int}_{0}^{+\infty}u^{sJ}e^{-u}du\\ &=&\sum\limits_{j\geqslant 0}\frac{ b^{j-J}\left\vert u_{j,\ast}(x)\right\vert}{{\Gamma}(1+sj)j!(\sin(\delta))^{sJ+ 1}}{\Gamma}(1+sJ)|t|^{J}, \end{array} $$

where, according to the choice of b (see the beginning of the proof), we have

$$\displaystyle{\sum}_{j\geqslant 0}\frac{ b^{j}\left\vert u_{j,\ast}(x)\right\vert}{{\Gamma}(1+sj)j!}\leqslant C\displaystyle{\sum}_{j\geqslant 0}\frac{{\Gamma}(1+(s + 1)j)}{{\Gamma}(1+sj)j!}(Kb)^{j}<+\infty.$$

Consequently, we finally get

$$\left\vert u(t,x)-\sum\limits_{j = 0}^{J-1}u_{j,\ast}(x)\frac{t^{j}}{j!}\right\vert\leqslant C^{\prime}K^{{\prime}J}{\Gamma}(1+sJ)|t|^{J}, $$

with \(C^{\prime }=\frac {C}{\sin (\delta )}\displaystyle \sum \limits _{j\geqslant 0}\frac {{\Gamma }(1+(s + 1)j)}{{\Gamma }(1+sj)j!}(Kb)^{j}\) and \(K^{\prime }=\frac {1}{b(\sin (\delta ))^{s}}\). The constants C and K depend on Σδ and on the choice of b, but are independent of t and x. This achieves the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remy, P. Gevrey Properties and Summability of Formal Power Series Solutions of Some Inhomogeneous Linear Cauchy-Goursat Problems. J Dyn Control Syst 26, 69–108 (2020). https://doi.org/10.1007/s10883-019-9428-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-019-9428-0

Keywords

Mathematics Subject Classification (2010)

Navigation