Skip to main content
Log in

Metric Geometry of Nonregular Weighted Carnot–Carathéodory Spaces

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

An Erratum to this article was published on 10 February 2015

Abstract

We investigate local and metric geometry of weighted Carnot–Carathéodory spaces which are a wide generalization of sub-Riemannian manifolds and arise in nonlinear control theory, subelliptic equations, etc. For such spaces, the intrinsic Carnot–Carathéodory metric might not exist, and some other new effects take place. We describe the local algebraic structure of such a space, endowed with a natural quasimetric (first introduced by A. Nagel, E. M. Stein, and S. Wainger) and compare local geometries of the initial Carnot–Carathéodory (CC) space and its tangent cone at some fixed (possibly nonregular) point. The main results of the present paper, in particular, the theorem on divergence of integral lines and other estimates obtained for the quasimetrics, are new even for the case of sub-Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This research was partially supported by the Federal Target Grant “Scientific and educational personnel of innovative Russia” for 2009–2013, government contract no. 8206, by the Integration Project SB RAS–FEB RAS, no. 56, and by the Russian Foundation for Basic Research (project No. 12-01-31183).

References

  1. Agrachev A, Barilari D, Boscain U. Introduction to Riemannian and sub-Riemannian geometry (from Hamiltonian viewpoint). SISSA Preprint, 2012.

  2. Agrachev AA, Sachkov YL. Control theory from the geometric viewpoint. Berlin: Springer; 2004.

    Book  MATH  Google Scholar 

  3. Basalaev SG, Vodopyanov SK. Approximate differentiability of mappings of Carnot–Carathéodory spaces. Eurasian Mat J 2013;4(2):10–48.

    MATH  MathSciNet  Google Scholar 

  4. Bellaiche A. The tangent space in sub-Riemannian geometry, Vol. 144. Sub-Riemannian geometry. Basel: Birkhäuser; 1996, pp. 1–78.

    Chapter  Google Scholar 

  5. Bianchini RM, Stefani G. Graded approximation and controllability along a trajectory. SIAM J Control Optim 1990;28:903–924.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bongfioli A, Lanconelli E, Uguzzoni F. Stratified Lie groups and potential theory for their sub-Laplacians. Berlin: Springer; 2007.

    Google Scholar 

  7. Bressan A, Rampazzo F. Moving constraints as stabilizing controls in classical mechanics. Arch Ration Mech Anal 2010;196:97–141.

    Article  MATH  MathSciNet  Google Scholar 

  8. Burago DY, Burago YD, Ivanov SV. A course in metric geometry, Vol. 33. Graduate studies in mathematics. Providence: American Mathematical Society; 2001.

    Google Scholar 

  9. Capogna L, Danielli D, Pauls SD, Tyson JT. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Vol. 259. Progress in mathematics. Basel: Birkhäuser; 2007.

    Google Scholar 

  10. Chow WL. Uber Systeme von linearen partiellen Differentialgleichungen erster Ordung. Math Ann 1939;117:98–105.

    MathSciNet  Google Scholar 

  11. Christ M, Nagel A, Stein EM, Wainger S. Singular radon transforms: analysis and geometry. Ann Math 1999;150(2):489–577.

    Article  MATH  MathSciNet  Google Scholar 

  12. Coron J-M. Stabilization of controllable systems sub-Riemannian geometry, Vol. 144. Progress in mathematics. Basel: Birkhäuser; 1996. pp. 365–388.

    Google Scholar 

  13. Folland GB. Applications of analysis on nilpotent groups to partial differential equations. Bull Amer Math Soc 1977;83(5):912–930.

    Article  MATH  MathSciNet  Google Scholar 

  14. Folland GB, Stein EM. Hardy spaces on homogeneous groups. Princeton: Princeton University Press; 1982.

    MATH  Google Scholar 

  15. Goodman R. Lifting vector fields to nilpotent Lie groups. J Math Pures et Appl 1978;57:77–86.

    MATH  Google Scholar 

  16. Greshnov AV. Local approximation of equiregular Carnot–Carathéodory spaces by its tangent cones. Sib Math J 2007;48(2):290–312.

    Article  MATH  MathSciNet  Google Scholar 

  17. Greshnov AV. Applications of the group analysis of differential equations to some systems of noncommuting C 1-smooth vector fields. Math Stat Siberian Math J 2009;50(1):37–48.

    Article  MathSciNet  Google Scholar 

  18. Greshnov AV. Analysis on quasimetric spaces. Saarbrucken: Palmarium Academic Publishing; 2012. Russian.

    Google Scholar 

  19. Gromov M. Groups of polynomial growth and expanding maps. Inst Hautes Etudes Sci Publ Math 1981;53:53–73.

    Article  MATH  MathSciNet  Google Scholar 

  20. Gromov M. Carno–Carathéodory spaces seen from within sub-Riemannian geometry, Vol. 144. Progress in mathematics. Basel: Birckhäuser; 1996. pp. 79–323.

    Google Scholar 

  21. Gromov M. Metric structures for Riemannian and non-Riemannian spaces. Basel: Birkhäuser; 2001.

    Google Scholar 

  22. Gauthier JP, Zakalyukin V. On the codimension one motion planning problem. J Dyn Control Syst 2005;11(1):73–89.

    Article  MATH  MathSciNet  Google Scholar 

  23. Gauthier JP, Zakalyukin V. On the motion planning problem, complexity, entropy and nonholonomic interpolation. J Dyn Control Syst 2006;12(3):371–404.

    Article  MATH  MathSciNet  Google Scholar 

  24. Hermann R. Some differential-geometric aspects of the Lagrangian variational problem. Ill J Math 1962;6:634–673.

    MATH  MathSciNet  Google Scholar 

  25. Hermes H. Nilpotent and high-order approximations of vector field systems. SIAM Rev 1991;33:238–264.

    Article  MATH  MathSciNet  Google Scholar 

  26. Hörmander L. Hypoelliptic second order differential equations. Acta Math 1967; 119(3–4):147–171.

    Article  MATH  MathSciNet  Google Scholar 

  27. Jean F. Uniform estimation of sub-Riemannian balls. J Dyn Control Syst 2001;7(4):473–500.

    Article  MATH  MathSciNet  Google Scholar 

  28. Jean F, Oriolo G, Vendittelli V. A globally convergent steering algorithm for regular nonholonomic systems. In: 44th IEEE conference on decision and control. Seville, 2005. pp. 7514–7519.

  29. Karmanova M. The new approach to investigation of Carnot–Carathéodory geometry GAFA 2011;21(6):1358–1374.

  30. Karmanova M, Vodopyanov S. Geometry of Carno–Carathéodory spaces, differentiability, coarea and area formulas. Analysis and mathematical physics, Trends in mathematics. Basel: Birckhäuser; 2009. pp. 233–335.

    Chapter  Google Scholar 

  31. Karmanova M, Vodopyanov S. On local approximation theorem on equiregular Carnot–Carathéodory spaces. In: Stefani G, Boscain U, Gauthier J-P, Sarychev A, Sigalotti M, editors. Geometric control theory and sub-Riemannian geometry, Springer INdAM Series 5. Switzerland: Springer; 2014. pp. 241–62.

    Chapter  Google Scholar 

  32. Mitchell J. On Carnot–Caratheodory metrics. J Differ Geom 1985;21:35–45.

    MATH  Google Scholar 

  33. Montanari A, Morbidelli D. Balls defined by nonsmooth vector fields and the Poincare’ inequality. Annales de l’Institut Fourier. 2004;54(2):431–452.

    Article  MATH  MathSciNet  Google Scholar 

  34. Montgomery R. A tour of subriemannian geometries, their geodesics and applications. Providence: American Mathematical Society; 2002.

    MATH  Google Scholar 

  35. Nagel A, Stein EM, Wainger S. Balls and metrics defined by vector fields I: basic properties. Acta Math 1985;155:103–147.

    Article  MATH  MathSciNet  Google Scholar 

  36. Pontryagin LS. Ordinary differential equations. Moscow: Nauka; 1974. Russian.

    Google Scholar 

  37. Postnikov MM. Lectures in geometry. Semester V: Lie groups and Lie algebras. Moscow: Nauka; 1982. Russian.

    MATH  Google Scholar 

  38. Rashevsky PK. Any two points of a totally nonholonomic space may be connected by an admissible line. Uch Zap Ped Inst im Liebknechta Ser Phys Math 1938;2:83–94. Russian.

    Google Scholar 

  39. Rotshild LP, Stein EM. Hypoelliptic differential operators and nilpotent groups. Acta Math 1976;137:247–320.

    Article  MathSciNet  Google Scholar 

  40. Selivanova SV. Tangent cone to a regular quasimetric Carnot–Carathéodory space. Doklady Math 2009;79:265–269.

    Article  MATH  MathSciNet  Google Scholar 

  41. Selivanova SV. Tangent cone to a quasimetric space with dilations. Sib Mat J 2010;51(2):388– 403.

    MathSciNet  Google Scholar 

  42. Selivanova SV. On local geometry of nonregular Carnot manifolds. Izv Vyssh Uchebn Zaved Mat 2011;8:85–88. Russian.

    Google Scholar 

  43. Selivanova SV. Local geometry of nonregular weighted quasimetric Carnot–Caratheodory spaces. Doklady Math 2012;443(1):16–21.

    MathSciNet  Google Scholar 

  44. Stein EM. Harmonic analysis: real-variables methods, orthogonality, and oscillatory integrals. Princeton: Princeton University Press; 1993.

    Google Scholar 

  45. Sussmann HJ, Jurdjevic V. Controllability of nonlinear systems. J Diff Equat 1972;12:95–116.

    Article  MATH  MathSciNet  Google Scholar 

  46. Vendittelli M, Oriolo G, Jean F, Laumond J-P. Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities. IEEE Trans Autom Control 2004;49(6):261–266.

    Article  MathSciNet  Google Scholar 

  47. Vershik AM, Gershgovich VY. Nonholonomic dynamical systems, geometry of distributions and variational problems dynamical systems VII. New York: Springer; 1994. pp. 1–81.

    Google Scholar 

  48. Vodopyanov SK, Karmanova MB. Local approximation theorem in Carnot manifolds under minimal assumptions on smoothness. Doklady Math 2009;80(1):585–589.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank Professor Sergei Vodopyanov for suggesting me this problematics, his interest to this work, and many fruitful discussions; Professor Andrei Agrachev for interesting discussions on the subject and useful references; Doctor Maria Karmanova for a consultation on her papers; and the anonymous referee for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Selivanova.

Additional information

This research was partially supported by the Federal Target Grant “Scientific and educational personnel of innovative Russia” for 2009–2013, government contract no. 8206, and by the Integration Project SB RAS–FEB RAS, no. 56.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selivanova, S. Metric Geometry of Nonregular Weighted Carnot–Carathéodory Spaces. J Dyn Control Syst 20, 123–148 (2014). https://doi.org/10.1007/s10883-013-9206-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-013-9206-3

Keywords

Mathematics Subject Classifications (2010)

Navigation