Skip to main content
Log in

Moving Constraints as Stabilizing Controls in Classical Mechanics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The paper analyzes a Lagrangian system which is controlled by directly assigning some of the coordinates as functions of time, by means of frictionless constraints. In a natural system of coordinates, the equations of motion contain terms which are linear or quadratic with respect to time derivatives of the control functions. After reviewing the basic equations, we explain the significance of the quadratic terms related to geodesics orthogonal to a given foliation. We then study the problem of stabilization of the system to a given point by means of oscillating controls. This problem is first reduced to theweak stability for a related convex-valued differential inclusion, then studied by Lyapunov functions methods. In the last sections, we illustrate the results by means of various mechanical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I., Kozlov V.V., Neishtadt A.I.: Mathematical Aspects of Classical and Celestial Mechanics 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Aubin J.P., Cellina A.: Differential Inclusions. Springer, Berlin (1984)

    MATH  Google Scholar 

  3. Ballieul, J.: The geometry of controlled mechanical systems. Mathematical Control Theory (Eds. Baillieul J. and Willems J.C.) Springer-Verlag, New York, 322–354, 1998

  4. Bailleul, J.: Averaging methods for force controlled and acceleration controlled lagrangian systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, December, 2000, pp. 1266–1272

  5. Bloch A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  6. Bloch A.M., Leonard N.E., Marsden J.E.: Controlled Lagrangians and the stabilization of Euler–Poincaré mechanical systems. Int. J. Robust Nonlinear Control 11, 191–214 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bloch, A.M., Marsden, J.E., Sánchez de Alvarez, G.: Feedback stabilization of relative equilibria for mechanical systems with symmetry. Current and Future Directions in Applied Mathematics. Birkhauser, Boston, 43–64, 1997

  8. Bressan A.: Impulsive control of Lagrangian systems and locomotion in fluids. Discrete Cont. Dyn. Syst. 20, 1–35 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control, AIMS Series in Applied Mathematics. Springfield, MO, 2007

  10. Bressan A., Rampazzo F.: On differential systems with vector-valued impulsive controls. Boll. Un. Matem. Italiana 2-B, 641–656 (1988)

    MathSciNet  Google Scholar 

  11. Bressan A., Rampazzo F.: Impulsive control systems with commutative vector fields. J. Optim. Theory Appl. 71, 67–84 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bressan A., Rampazzo F.: On systems with quadratic impulses and their application to Lagrangean mechanics. SIAM J. Control Optim. 31, 1205–1220 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bressan A.: Hyperimpulsive motions and controllizable coordinates for Lagrangean systems. Atti Accad. Naz. Lincei, Memorie, Serie VIII, Vol. XIX, 197–246 (1990)

  14. Bressan, A.: On some control problems concerning the ski or swing. Atti Accad. Naz. Lincei, Memorie Serie IX, Vol. I, 147–196 (1991)

  15. Bressan A., Motta M.: A class of mechanical systems with some coordinates as controls. A reduction of certain optimization problems for them. Solution methods. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem. 9, 5–30 (1993)

    Google Scholar 

  16. Bullo F.: Averaging and vibrational control of mechanical systems. SIAM J. Control Optim. 41, 542–562 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bullo F., Lewis A.D.: Geometric Control of Mechanical Systems. Springer, Berlin (2004)

    Google Scholar 

  18. Cardin F., Favretti M.: Hyper-impulsive motion on manifolds. Dyn. Cont. Discrete Impulsive Syst. 4, 1–21 (1998)

    MATH  MathSciNet  Google Scholar 

  19. Jurdjevic V.: Geometric Control Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Levi M.: Geometry and physics of averaging with applications. Phys. D 132, 150–164 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Levi M.: Geometry of vibrational stabilization and some applications. Int. J. Bifurc. Chaos 15, 2747–2756 (2005)

    Article  MATH  Google Scholar 

  22. Levi M., Ren Q.: Geodesics on vibrating surfaces and curvature of the normal family. Nonlinearity 18, 2737–2743 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Lee J.M.: Riemannian Manifolds. An introduction to Curvature. Springer, Berlin (1997)

    MATH  Google Scholar 

  24. Liu, W.S., Sussmann, H.J.: Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories. Proceedings of the 30th IEEE Conference on Decision and Control. IEEE Publications, New York, 1991, pp. 437–442.

  25. Marle, C.: Géométrie des systèmes mécaniques à liaisons actives. Symplectic Geometry and Mathematical Physics (Eds. Donato P., Duval C., Elhadad J., and Tuynman G.M.). Birkhäuser, Boston, 260–287, 1991

  26. Miller B.M.: The generalized solutions of ordinary differential equations in the impulse control problems. J. Math. Syst. Estim. Control 4, 385–388 (1994)

    MATH  Google Scholar 

  27. Nijmejer H., van der Schaft A.J.: Nonlinear Dynamical Control Systems. Springer, New York (1990)

    Google Scholar 

  28. Rampazzo F.: On Lagrangian systems with some coordinates as controls. Atti Accad. Naz. dei Lincei, Classe di Scienze Mat. Fis. Nat. Serie 8 82, 685–695 (1988)

    MATH  MathSciNet  Google Scholar 

  29. Rampazzo F.: On the Riemannian structure of a Lagrangean system and the problem of adding time-dependent coordinates as controls. Eur. J. Mech. A Solids 10, 405–431 (1991)

    MATH  MathSciNet  Google Scholar 

  30. Rampazzo F. Lie brackets and impulsive controls: an unavoidable connection. Differential Geometry and Control, Proc. Sympos. Pure Math. AMS, Providence, 279–296 (1999)

  31. Rampazzo, F.: Lecture Notes on Control and Mechanics (2009, preprint)

  32. Rampazzo F., Sartori C.: Hamilton–Jacobi–Bellman equations with fast gradient-dependence. Indiana Univ. Math. J. 49, 1043–1078 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Reinhart B.L.: Foliated manifolds with bundle-like metrics. Ann. Math. 69, 119–132 (1959)

    Article  MathSciNet  Google Scholar 

  34. Reinhart B.L.: Differential geometry of foliations. The fundamental integrability problem. Springer, Berlin (1983)

    MATH  Google Scholar 

  35. Smirnov, G.V.: Introduction to the Theory of Differential Inclusions. American Mathematical Society, Graduate Studies in Mathematics, Vol. 41, 2002

  36. Synge J.L., Schild A.: Tensor Calculus. Dover Publications, New York (1978)

    MATH  Google Scholar 

  37. Sontag E.D.: Mathematical Control Theory. Springer, New York (1990)

    MATH  Google Scholar 

  38. Sussmann H.J.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6, 17–41 (1978)

    Article  MathSciNet  Google Scholar 

  39. Sussmann, H.J.: Lie Brackets, Real Analyticity and Geometric Control Theory. Mathematical Control Theory (Eds. Brockett R.W., Millmam R.S. and Sussmann H.J.) Birkhäuser, Boston Inc., Boston, 1–115, 1983

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bressan.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressan, A., Rampazzo, F. Moving Constraints as Stabilizing Controls in Classical Mechanics. Arch Rational Mech Anal 196, 97–141 (2010). https://doi.org/10.1007/s00205-009-0237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0237-6

Keywords

Navigation