Skip to main content
Log in

A low complexity semidefinite relaxation for large-scale MIMO detection

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Many wireless communication problems is based on a convex relaxation of the maximum likelihood problem which further can be cast as binary quadratic programs (BQPs). The two standard relaxation methods that are widely used for solving general BQPs such as spectral methods and semidefinite programming problem (SDP), each have their own advantages and disadvantages. It is widely accepted that small and medium sized SDP problems can be solved efficiently by interior point methods. Albeit, semidefinite relaxation has a tighter bound for large scale problems, but its computational complexity is high. However, Row-by-Row method (RBR) for solving SDPs could be opted for an alternative for large-scale MIMO detection because of low complexity. The present work is a spectral SDP-cut formulation to which the RBR is applied for large-scale MIMO detection. A modified RBR algorithm with tighter bound is presented to specify the efficiency in detecting massive MIMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Damen MO, Gamal HE, Caire G (2003) On maximum likelihood detection and the search for the closest lattice point. IEEE Trans Inf Theory 49:2389–2402

    Article  MathSciNet  MATH  Google Scholar 

  • Foschini GJ (1996) Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech J 1:41–59

    Article  Google Scholar 

  • Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent advances in learning and control (a tribute to M. Vidyasagar). Lecture notes in control and information sciences, Springer, pp 95–110

  • Grant M, Boyd S (2012) CVX Research, Inc. CVX: Matlab software for disciplined convex programming, version 2.0 beta

  • Jaldén J, Ottersten B (2005) On the complexity of sphere decoding in digital communications. IEEE Trans Signal Process 53:1474–1484

    Article  MathSciNet  MATH  Google Scholar 

  • Kisialiou M, Luo X, Luo Z-Q (2009) Efficient implementation of quasimaximum likelihood detection based on semidefinite relaxation. IEEE Trans Signal Process 57:4811–4822

    Article  MathSciNet  Google Scholar 

  • Luo Z-Q, Chang T-H (2010) SDP relaxation of homogeneous quadratic optimization: approximation bounds and applications. In: Palomar DP, Eldar YC (eds) Convex optimization in signal processing and communications, chapter 4. Cambridge University Press, Cambridge

    Google Scholar 

  • Luo Z-Q, Ma W-K, So AM-C, Ye Y et al (2010) Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process Mag 27(3):20–34

    Article  Google Scholar 

  • Ma W-K, Davidson TN, Wong KM et al (2002) Quasi-maximum-likelihood multiuser detection using semidefinite relaxation with application to synchronous CDMA. IEEE Trans Signal Process 50:912–922

    Article  MathSciNet  MATH  Google Scholar 

  • Ma W-K, Ching PC, Ding Z (2004) Semidefinite relaxation based multiuser detection for M-ary PSK multiuser systems. IEEE Trans Signal Process 52:2862–2872

    Article  Google Scholar 

  • Ma W-K, Su C-C, Jaldén J et al (2009) The equivalence of semidefinite relaxation MIMO detectors for higher order QAM. IEEE J Sel Top Signal Process 3:1038–1052

    Article  Google Scholar 

  • Malick J (2007) Other manifestations of the Schur complement. Linear Algebra Appl 39:609–622

    MathSciNet  MATH  Google Scholar 

  • Mobasher A, Taherzadeh M, Sotirov R et al (2007) A near-maximum-likelihood decoding algorithm for MIMO systems based on semidefinite programming. IEEE Trans Inf Theory 53:3869–3886

    Article  MATH  Google Scholar 

  • Steingrimsson B, Luo Z-Q, Wong KM (2003) Soft quasi-maximumlikelihood detection for multiple-antenna wireless channels. IEEE Trans Signal Process 51:2710–2719

    Article  Google Scholar 

  • Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11:625–653

    Article  MathSciNet  MATH  Google Scholar 

  • Tan P, Rasmussen L (2001) The application of semidefinite programming for detection in CDMA. IEEE J Sel Areas Commun 19:1442–1449

    Article  Google Scholar 

  • Tarokh V, Seshadri N, Calderbank V (1998) Space-time codes for high data rate wireless communications: performance criterion and code construction. IEEE Trans Inf Theory 44:744–765

    Article  MathSciNet  MATH  Google Scholar 

  • Toh KC, Todd MJ, Tütüncü RH (1999) SDPT3-a Matlab software package for semidefinite programming. Optim Methods Softw 11/12:545–581

    Article  MathSciNet  MATH  Google Scholar 

  • Verdú S (1989) Computational complexity of optimum multiuser detection. Algorithmica 4:303–312

    Article  MathSciNet  MATH  Google Scholar 

  • Wai H-T, Ma W-K, So A-MC (2011) Cheap semidefinite relaxation MIMO detection using Row-by-Row block coordinate descent. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 3256–3259

  • Wang P, Shen C, van den Hengel A (2013) A fast semidefinite approach to solving binary quadratic problems. In: Proceedings of IEEE conference on computer vision and pattern recognition

  • Wen Z, Goldfarb D, Ma S, Scheinberg K (2009) Row by row methods for semidefinite programming. Technical report, Department of IEOR, Columbia University

  • Zhang F (ed) (2005) The Schur complement and its applications Numerical methods and algorithms. Springer, Berlin, p 4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupaj Kumar Nayak.

Appendices

Appendix A: Simplification of the \(z_r\)

The Eq. (18) can be written as

$$\begin{aligned}&z_r+\frac{\lambda }{\rho }\varLambda _r^{-1}z_r =-\frac{1}{2\rho }Q_r^\top c_1\\&\quad \Rightarrow \left( I+\frac{\lambda }{\rho }\varLambda _r^{-1}\right) z_r=-\frac{1}{2\rho }Q_r^\top c_1\\&\quad \Rightarrow \frac{\lambda }{\rho }\varLambda _r^{-1} (\frac{\rho }{\lambda }(\varLambda _r+I)z_r=-\frac{1}{2\rho }Q_r^\top c_1\\&\quad \Rightarrow z_r=-\frac{1}{2\lambda }\left( \frac{\rho }{\lambda }\varLambda _r+I\right) ^{-1} \varLambda _rQ_r^\top c_1 . \end{aligned}$$

Appendix B: Proof of: \(D\varLambda _r^{-1}D=\varLambda _r^{-1}D^2\)

It is to be noted that D is a diagonal matrix and so also \(\varLambda _r\). Therefore, \(D\varLambda _r^{-1}D=\varLambda _r^{-1}D^2\).

Appendix C: Proof of: \(Q_rD^2Q_r^\top =[(\frac{\rho }{\lambda }B+I)^2]^{-1}\)

$$\begin{aligned} Q_rD^2Q_r^\top&\,=Q_r\left( \frac{\rho }{\lambda }\varLambda _r+I\right) ^{-1} \left( \frac{\rho }{\lambda }\varLambda _r+I\right) ^{-1}Q_r^{-1}\\&=\left[ Q_r\left( \frac{\rho }{\lambda }\varLambda _r+I\right) \left( \frac{\rho }{\lambda }\varLambda _r+I\right) Q_r^{-1}\right] ^{-1}\\&=\left[ \frac{\rho ^2}{\lambda ^2}Q_r\varLambda _r^2Q_r^{-1} +\frac{2\rho }{\lambda }Q_r\varLambda _rQ_r^{-1}+I\right] ^{-1}\\&=\left[ \frac{\rho ^2}{\lambda ^2}B^2+\frac{2\rho }{\lambda }B+I\right] ^{-1}\\&=\left[ \left( \frac{\rho }{\lambda }B+I\right) ^2\right] ^{-1}=S^2 \end{aligned}$$

where \(S=(\frac{\rho }{\lambda }B+I)^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, R.K., Biswal, M.P. A low complexity semidefinite relaxation for large-scale MIMO detection. J Comb Optim 35, 473–492 (2018). https://doi.org/10.1007/s10878-017-0186-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0186-1

Keywords

Navigation