Skip to main content
Log in

Solving the maximum vertex weight clique problem via binary quadratic programming

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In recent years, the general binary quadratic programming (BQP) model has been widely applied to solve a number of combinatorial optimization problems. In this paper, we recast the maximum vertex weight clique problem (MVWCP) into this model which is then solved by a probabilistic tabu search algorithm designed for the BQP. Experimental results on 80 challenging DIMACS-W and 40 BHOSLIB-W benchmark instances demonstrate that this general approach is viable for solving the MVWCP problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://cs.hbg.psu.edu/txn131/clique.html.

  2. http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

References

  • Alidaee B, Glover F, Kochenberger GA, Wang H (2007) Solving the maximum edge weight clique problem via unconstrained quadratic programming. Eur J Oper Res 181:592–597

    Article  MATH  Google Scholar 

  • Alidaee B, Kochenberger GA, Lewis K, Lewis M, Wang H (2008) A new approach for modeling and solving set packing problem. Eur J Oper Res 86(2):504–512

    Article  MathSciNet  MATH  Google Scholar 

  • Babel L (1994) A fast algorithm for the maximum weight clique problem. Computing 52(1):31–38

    Article  MathSciNet  MATH  Google Scholar 

  • Ballard D, Brown C (1983) Computer vision. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Benlic U, Hao JK (2013) Breakout local search for maximum clique problems. Comput Oper Res 40(1):192–206

    Article  MathSciNet  MATH  Google Scholar 

  • Bomze IM, Pelillo M, Stix V (2000) Approximating the maximum weight clique using replicator dynamics. IEEE Trans Neural Netw 11:1228–1241

    Article  Google Scholar 

  • Busygin S (2006) A new trust region technique for the maximum weight clique problem. Discret Appl Math 154:2080–2096

    Article  MathSciNet  MATH  Google Scholar 

  • Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper Res Lett 9(6):375–382

    Article  MATH  Google Scholar 

  • Dorigo M (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evolut Comput 1(1):53–66

    Article  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-Completeness. Freeman, San Francisco

    MATH  Google Scholar 

  • Glover F (1989) Tabu search—Part I. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  • Glover F, Hao JK (2010) Efficient evaluation for solving 0–1 unconstrained quadratic optimization problems. Int J Metaheuristics 1(1):3–10

    Article  MathSciNet  MATH  Google Scholar 

  • Glover F, Hao JK (2010) Fast 2-flip move evaluations for binary unconstrained quadratic optimization problems. Int J Metaheuristics 1(2):100–107

    Article  MathSciNet  MATH  Google Scholar 

  • Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Norwell

    Book  MATH  Google Scholar 

  • Hansen P, Mladenović N (2001) Variable neighborhood search: principles and applications. Eur J Oper Res 130(3):449–467

    Article  MathSciNet  MATH  Google Scholar 

  • He K, Huang W (2010) A quasi-human algorithm for solving the three-dimensional rectangular packing problem. Sci China Inf Sci 53(12):2389–2398

    Article  MathSciNet  MATH  Google Scholar 

  • Horst R, Pardalos PM, Thoai NV (1995) Introduction to global optimization, nonconvex optimization and its applications, vol 3. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  • Kochenberger GA, Glover F, Alidaee B, Rego C (2004) A unified modeling and solution framework for combinatorial optimization problems. OR Spectr 26:237–250

    Article  MATH  Google Scholar 

  • Kochenberger G, Alidaee B, Glover F, Wang HB (2007) An effective modeling and solution approach for the generalized independent set problem. Optim Lett 1:111–117

    Article  MathSciNet  MATH  Google Scholar 

  • Kochenberger G, Hao JK, Lü Z, Wang H, Glover F (2013) Solving large scale max cut problems via tabu search. J Heuristics 19(4):565–571

    Article  Google Scholar 

  • Kochenberger G, Hao JK, Glover F, Lewis M, Lü Z, Wang H, Wang Y (2014) The unconstrained binary quadratic programming problem: a survey. J Comb Optim 28(1):58–81

    Article  MathSciNet  MATH  Google Scholar 

  • Konc J, Janĕzic̆ D (2007) An improved branch and bound algorithm for the maximum clique problem. MATCH Commun Math Comput Chem 58:569–590

    MathSciNet  MATH  Google Scholar 

  • Li C, Quan Z (2010) An efficient branch-and-bound algorithm based on MAXSAT for the maximum clique problem. In: Proceedings of the 24th AAAI conference on artificial intelligence, pp 128–133

  • Lewis M, Kochenberger G, Alidaee B (2008) A new modeling and solution approach for the set-partitioning problem. Comput Oper Res 2008:807–813

    Article  MathSciNet  MATH  Google Scholar 

  • Macreesh C, Prosser P (2013) Multi-threading a state-of-the-art maximum clique algorithm. Algorithms 6(4):618–635

    Article  MathSciNet  Google Scholar 

  • Manninno C, Stefanutti E (1999) An augmentation algorithm for the maximum weighted stable set problem. Comput Optim Appl 14:367–381

    Article  MathSciNet  MATH  Google Scholar 

  • Östergård PRJ (2001) A new algorithm for the maximum weight clique problem. Nordic J Comput 8(4):424–436

    MathSciNet  Google Scholar 

  • Östergård PRJ (2002) A fast algorithm for the maximum clique problem. Discret Appl Math 120(1):197–207

    Article  MathSciNet  Google Scholar 

  • Pajouh FM, Balasumdaram B, Prokopyev O (2013) On characterization of maximal independent sets via quadratic optimization. J Heuristics 19(4):629–644

    Article  Google Scholar 

  • Pardalos PM, Rodgers GP (1992) A branch and bound algorithm for the maximum clique problem. Comput Oper Res 19(5):363–375

    Article  MATH  Google Scholar 

  • Pullan W (2008) Approximating the maximum vertex/edge weighted clique using local search. J Heuristics 14:117–134

    Article  MATH  Google Scholar 

  • Rebennack S, Oswald M, Theis D, Seitz H, Reinelt G, Pardalos PM (2011) A branch and cut solver for the maximum stable set problem. J Comb Optim 21(4):434–457

    Article  MathSciNet  MATH  Google Scholar 

  • Rebennack S, Reinelt G, Pardalos PM (2012) A tutorial on branch and cut algorithms for the maximum stable set problem. Int Trans Oper Res 19(1–2):161–199

    Article  MathSciNet  MATH  Google Scholar 

  • Segundo PS, Rodríguez-Losada D, Jiménez A (2011) An exact bitparallel algorithm for the maximum clique problem. Comput Oper Res 38(2):571–581

    Article  MathSciNet  MATH  Google Scholar 

  • Sengor NS, Cakir Y, Guzelis C, Pekergin F, Morgul O (1999) An analysis of maximum clique formulations and saturated linear dynamical network. ARI 51:268–276

    Article  Google Scholar 

  • Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J Glob Optim 37(1):95–111

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Lü Z, Glover F, Hao JK (2013) Probabilistic GRASP-tabu search algorithms for the UBQP problem. Comput Oper Res 40(12):3100–3107

    Article  MathSciNet  Google Scholar 

  • Warren JS, Hicks IV (2006) Combinatorial branch-and-bound for the maximum weight independent set problem. Technical Report, Texas A&M University

  • Wu Q, Hao JK (2015) A review on algorithms for maximum clique problems. Eur J Oper Res 242:693–709

    Article  MathSciNet  Google Scholar 

  • Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for the maximum weight clique problem. Ann Oper Res 196(1):611–634

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y, Huang W, Lau S, Wong CK, Young GH (2002) An effective quasi-human based heuristic for solving the rectangle packing problem. Eur J Oper Res 141(2):341–358

    Article  MathSciNet  MATH  Google Scholar 

  • Xu JF, Chiu SY, Glover F (1996) Probabilistic tabu search for telecommunications network design. Comb Optim Theory Pract 1(1):69–94

    Google Scholar 

Download references

Acknowledgments

We are grateful to the reviewers and the editors for their comments which help us to improve the paper. This work was supported by National Natural Science Foundation of China (Grant Nos. 71501157, 71172124), China Postdoctoral Science Foundation (Grant No. 2015M580873) and Northwestern Polytechnical University (Grant No. 3102015RW007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Kao Hao.

Additional information

In memory of Professor Wenqi Huang for his pioneer work on nature-inspired optimization methods.

Appendix

Appendix

To illustrate the transformation from the MVWCP to the BQP, we consider the following graph (see Fig. 1):

Fig. 1
figure 1

A graph sample

Its linear formulation according to Eq. (1) is:

$$\begin{aligned} \begin{aligned} Max \ \ f(x)=2x_{1}+3x_{2}+4x_{3}+5x_{4}+2x_{5}+3x_{6} \\ \text {s.t.}\ \ \ \ x_1+x_3 \le 1;\ \ \ \ \ \ \ \ \ \ x_1+x_4 \le 1; \\ x_1+x_6 \le 1;\ \ \ \ \ \ \ \ \ \ x_2+x_4 \le 1;\\ x_2+x_6 \le 1;\ \ \ \ \ \ \ \ \ \ x_3+x_5 \le 1;\\ x_3+x_6 \le 1;\ \ \ \ \ \ \ \ \ \ x_5+x_6 \le 1. \end{aligned} \end{aligned}$$
(6)

Choosing the scalar penalty \(P=-15\), we obtain the following BQP model:

$$\begin{aligned} Max\quad f(x)= & {} 2x_{1}+3x_{2}+4x_{3}+5x_{4}+2x_{5}+3x_{6}-30x_{1}x_{3}-30x_{1}x_{4}\nonumber \\&-30x_{1}x_{6}-30x_{2}x_{4}-30x_{2}x_{6}-30x_{3}x_{5}-30x_{3}x_{6}-30x_{5}x_{6} \end{aligned}$$
(7)

which can be re-written as:

$$\begin{aligned} \left( \begin{array}{c} x_1\ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \end{array}\right) \times \left( \begin{array}{cccccc} 2 &{}0 &{}-15 &{}-15 &{}0 &{}-15 \\ 0 &{}3 &{}0 &{}-15 &{}0 &{}-15 \\ -15 &{}0 &{}4 &{}0 &{}-15 &{}-15 \\ -15 &{}-15 &{}0 &{}5 &{}0 &{}0 \\ 0 &{}0 &{}-15 &{}0 &{}2 &{}-15 \\ -15 &{}-15 &{}-15 &{}0 &{}-15&{}3 \\ \end{array}\right) \times \left( \begin{array}{c} x_1 \\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \\ \end{array}\right) \end{aligned}$$
(8)

Solving this BQP problem yields \(x_3=x_4=1\) (all other variables equal zero) and the optimal objective function value is 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hao, JK., Glover, F. et al. Solving the maximum vertex weight clique problem via binary quadratic programming. J Comb Optim 32, 531–549 (2016). https://doi.org/10.1007/s10878-016-9990-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-9990-2

Keywords

Navigation