Skip to main content
Log in

Bioreactance-derived haemodynamic parameters in the transitional phase in preterm neonates: a longitudinal study

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Bioreactance (BR) is a novel, non-invasive technology that is able to provide minute-to-minute monitoring of cardiac output and additional haemodynamic variables. This study aimed to determine the values for BR-derived haemodynamic variables in stable preterm neonates during the transitional period. A prospective observational study was performed in a group of stable preterm (< 37 weeks) infants in the neonatal service of Tygerberg Children’s Hospital, Cape Town, South Africa. All infants underwent continuous bioreactance (BR) monitoring until 72 h of life. Sixty three preterm infants with a mean gestational age of 31 weeks and mean birth weight of 1563 g were enrolled. Summary data and time series graphs were drawn for BR-derived heart rate, non-invasive blood pressure, stroke volume, cardiac output and total peripheral resistance index. All haemodynamic parameters were significantly associated with postnatal age, after correction for clinical variables (gestational age, birth weight, respiratory support mode). To our knowledge, this is the first paper to present longitudinal BR-derived haemodynamic variable data in a cohort of stable preterm infants, not requiring invasive ventilation or inotropic support, during the first 72 h of life. Bioreactance-derived haemodynamic monitoring is non-invasive and offers the ability to simultaneously monitor numerous haemodynamic parameters of global systemic blood flow. Moreover, it may provide insight into transitional physiology and its pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data are available upon request from corresponding author and available on SUNScholarData.

References

  1. Azhibekov T, Noori S, Soleymani S, Seri I. Transitional cardiovascular physiology and comprehensive hemodynamic monitoring in the neonate: relevance to research and clinical care. Semin Fetal Neonatal Med. 2014;19:45–53. https://doi.org/10.1016/j.siny.2013.09.009.

    Article  PubMed  Google Scholar 

  2. Soleymani S, Borzage M, Seri I, Seri I, Borzage M, Seri I, et al. Hemodynamic monitoring in neonates: advances and challenges. J Perinatol. 2010;30:S38-45. https://doi.org/10.1038/jp.2010.101.

    Article  PubMed  Google Scholar 

  3. Jakovljevic DG, Moore S, Hallsworth K, Fattakhova G, Thoma C, Trenell MI. Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise. J Clin Monit Comput. 2012;26:63–8. https://doi.org/10.1007/s10877-012-9334-4.

    Article  PubMed  Google Scholar 

  4. Van Laere D, Voeten M, O’ Toole JM, Dempsey E. Monitoring circulation during transition in extreme low gestational age newborns: what’s on the horizon? Front Pediatr. 2018;6:1–6. https://doi.org/10.3389/fped.2018.00074.

    Article  Google Scholar 

  5. Kobe J, Mishra N, Arya VK, Al-Moustadi W, Nates W, Kumar B. Cardiac output monitoring: technology and choice. Ann Card Anaesth. 2019;22:6–17. https://doi.org/10.4103/aca.ACA_41_18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mehta Y. Newer methods of cardiac output monitoring. World J Cardiol. 2014;6:1022. https://doi.org/10.4330/wjc.v6.i9.1022.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joosten A, Desebbe O, Suehiro K, Murphy LSL, Essiet M, Alexander B, et al. Accuracy and precision of non-invasive cardiac output monitoring devices in perioperative medicine: a systematic review and meta-analysis. Br J Anaesth. 2017;118:298–310. https://doi.org/10.1093/bja/aew461.

    Article  CAS  PubMed  Google Scholar 

  8. Sanders M, Servaas S, Slagt C. Accuracy and precision of non-invasive cardiac output monitoring by electrical cardiometry: a systematic review and meta-analysis. J Clin Monit Comput. 2020;34:433–60. https://doi.org/10.1007/s10877-019-00330-y.

    Article  CAS  PubMed  Google Scholar 

  9. Weisz DEDE, Jain A, McNamara PJPJ, El-Khuffash A. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography. Neonatology. 2012;102:61–7. https://doi.org/10.1159/000337295.

    Article  PubMed  Google Scholar 

  10. Paviotti G, De Cunto A, Moressa V, Bettiol C, Demarini S. Thoracic fluid content by electric bioimpedance correlates with respiratory distress in newborns. J Perinatol. 2017;37:1024–7. https://doi.org/10.1038/jp.2017.100.

    Article  CAS  PubMed  Google Scholar 

  11. Weaver B, Guerreso K, Conner EA, Russell K, Vogel R, Rodriguez M. Hemodynamics and perfusion in premature infants during transfusion. AACN Adv Crit Care. 2018;29:126–37. https://doi.org/10.4037/aacnacc2018402.

    Article  PubMed  Google Scholar 

  12. Miletin J, Semberova J, Martin AMAM, Janota J, Stranak Z. Low cardiac output measured by bioreactance and adverse outcome in preterm infants with birth weight less than 1250 g. Early Hum Dev. 2020. https://doi.org/10.1016/j.earlhumdev.2020.105153.

    Article  PubMed  Google Scholar 

  13. Freidl T, Baik N, Pichler G, Schwaberger B, Zingerle B, Avian A, et al. Haemodynamic transition after birth: a new tool for non-invasive cardiac output monitoring. Neonatology. 2016;111:55–60. https://doi.org/10.1159/000446468.

    Article  PubMed  Google Scholar 

  14. Hsu K-HH, Wu T-WW, Wang Y-CC, Lim W-HH, Lee C-CC, Lien R. Hemodynamic reference for neonates of different age and weight: a pilot study with electrical cardiometry. J Perinatol. 2016;36:481–5. https://doi.org/10.1038/jp.2016.2.

    Article  PubMed  Google Scholar 

  15. Jakovljevic DG, Trenell MI, MacGowan GA. Bioimpedance and bioreactance methods for monitoring cardiac output. Best Pract Res Clin Anaesthesiol. 2014;28:381–94. https://doi.org/10.1016/j.bpa.2014.09.003.

    Article  PubMed  Google Scholar 

  16. Sikaris KA. Physiology and its importance for reference intervals. Clin Biochem Rev. 2014;35:3–14.

    PubMed  PubMed Central  Google Scholar 

  17. Cardoso S, Silva MJ, Guimarães H. Autonomic nervous system in newborns: a review based on heart rate variability. Child’s Nerv Syst. 2017;33:1053–63. https://doi.org/10.1007/s00381-017-3436-8.

    Article  Google Scholar 

  18. Gournay V, Drouin E, Rozé JC. Development of baroreflex control of heart rate in preterm and full term infants. Arch Dis Child Fetal Neonatal Ed. 2002. https://doi.org/10.1136/fn.86.3.f151.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Javorka K, Javorka M, Tonhajzerova I, Calkovska A, Lehotska Z, Bukovinska Z, et al. Determinants of heart rate in newborns. Acta Medica Martiniana. 2011;11(2):7–16. https://doi.org/10.2478/v10201-011-0012-x.

    Article  Google Scholar 

  20. Alonzo CJ, Nagraj VP, Zschaebitz JV, Lake DE, Moorman JR, Spaeder MC. Heart rate ranges in premature neonates using high resolution physiologic data. J Perinatol. 2018;38:1242–5. https://doi.org/10.1038/s41372-018-0156-1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Al-Omar S, Le Rolle V, Pladys P, Samson N, Hernandez A, Carrault G, et al. Influence of nasal CPAP on cardiorespiratory control in healthy neonate. Front Physiol. 2019;127:1–12. https://doi.org/10.3389/fphys.2019.00922.

    Article  Google Scholar 

  22. Davidson S, Reina N, Shefi O, Hai-Tov U, Akselrod S. Spectral analysis of heart rate fluctuations and optimum thermal management for low birth weight infants. Med Biol Eng Comput. 1997;35:619–25. https://doi.org/10.1007/BF02510969.

    Article  CAS  PubMed  Google Scholar 

  23. Kibblewhite DP, Sleigh JW. Heart rate variability in premature neonates pre- and postmethylxanthine administration. Paediatr Anaesth. 1996;6:399–403. https://doi.org/10.1046/j.1460-9592.1996.d01-10.x.

    Article  CAS  PubMed  Google Scholar 

  24. Joynt C, Cheung PY. Treating hypotension in preterm neonates with vasoactive medications. Front Pediatr. 2018;6:1–8. https://doi.org/10.3389/fped.2018.00086.

    Article  Google Scholar 

  25. Al-Omar S, Le Rolle V, Pladys P, Samson N, Hernandez A, Carrault G, et al. Influence of nasal CPAP on cardiorespiratory control in healthy neonate. J Appl Physiol. 2019;127:1370–85. https://doi.org/10.1152/japplphysiol.00994.2018.

    Article  PubMed  Google Scholar 

  26. Noori S, Seri I. Principles of developmental cardiovascular physiology and pathophysiology. In: Seri I, Kluckow M, Polin RA, editors. eonatology questions and controversies hemodynamics cardiology. 3rd ed. Philadelphia: Elsevier; 2019. p. 3–15.

    Chapter  Google Scholar 

  27. Evans N, Kluckow M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child. 1996;74:88–94. https://doi.org/10.1136/fn.74.2.f88.

    Article  Google Scholar 

  28. Dempsey EM, Barrington KJ. Treating hypotension in the preterm infant: when and with what: a critical and systematic review. J Perinatol. 2007;27:469–78. https://doi.org/10.1038/sj.jp.7211774.

    Article  CAS  PubMed  Google Scholar 

  29. Yiallourou SR, Witcombe NB, Sands SA, Walker AM, Horne RSC. The development of autonomic cardiovascular control is altered by preterm birth. Early Hum Dev. 2013;89:145–52. https://doi.org/10.1016/j.earlhumdev.2012.09.009.

    Article  PubMed  Google Scholar 

  30. Alonzo CJ, Nagraj VP, Zschaebitz JV, Lake DE, Moorman JR, Spaeder MC. Blood pressure ranges via non-invasive and invasive monitoring techniques in premature neonates using high resolution physiologic data. J Neonatal Perinatal Med. 2020;13:351–8. https://doi.org/10.3233/NPM-190260.

    Article  CAS  PubMed  Google Scholar 

  31. Sloot SC, De Waal KA, Van Der Lee JH, Van Kaam AH. Central blood flow measurements in stable preterm infants after the transitional period. Arch Dis Child Fetal Neonatal Ed. 2010;95:369–72. https://doi.org/10.1136/adc.2009.169169.

    Article  Google Scholar 

  32. Vrancken SL, van Heijst AF, de Boode WP. Neonatal hemodynamics: from developmental physiology to comprehensive monitoring. Front Pediatr. 2018;6:1–15. https://doi.org/10.3389/fped.2018.00087.

    Article  Google Scholar 

  33. Van Vonderen JJ, Roest AAW, Siew ML, Walther FJ, Hooper SB, Te Pas AB. Measuring physiological changes during the transition to life after birth. Neonatology. 2014;105:230–42. https://doi.org/10.1159/000356704.

    Article  PubMed  Google Scholar 

  34. Ha KS, Choi BM, Lee EH, Shin J, Cho HJ, Jang GY, et al. Chronological echocardiographic changes in healthy term neonates within postnatal 72 hours using Doppler studies. J Korean Med Sci. 2018;33:e155. https://doi.org/10.3346/jkms.2018.33.e155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murase M, Ishida A. Echocardiographic assessment of early circulatory status in preterm infants with suspected intrauterine infection. Arch Dis Child Fetal Neonatal Ed. 2006;91:105–11. https://doi.org/10.1136/adc.2005.079079.

    Article  Google Scholar 

  36. Beker F, Rogerson SR, Hooper SB, Wong C, Davis PG. The effects of nasal continuous positive airway pressure on cardiac function in premature infants with minimal lung disease: a crossover randomized trial. J Pediatr. 2014;164:726–9. https://doi.org/10.1016/j.jpeds.2013.10.087.

    Article  PubMed  Google Scholar 

  37. Montner PK, Greene ER, Murata GH, Stark DM, Timms M, Chick TW. Hemodynamic effects of nasal and face mask continuous positive airway pressure. Am J Respir Crit Care Med. 1994;149:1614–8. https://doi.org/10.1164/ajrccm.149.6.8004320.

    Article  CAS  PubMed  Google Scholar 

  38. de Waal KA, Evans N, Osborn DA, Kluckow M. Cardiorespiratory effects of changes in end expiratory pressure in ventilated newborns. Arch Dis Child Fetal Neonatal Ed. 2007;92:444–9. https://doi.org/10.1136/adc.2006.103929.

    Article  Google Scholar 

  39. Moritz B, Fritz M, Mann C, Simma B. Nasal continuous positive airway pressure (n-CPAP) does not change cardiac output in preterm infants. Am J Perinatol. 2008;25:105–9. https://doi.org/10.1055/s-2008-1040341.

    Article  PubMed  Google Scholar 

  40. Mukerji A, Wahab MGA, Mitra S, Mondal T, Paterson D, Beck J, et al. High continuous positive airway pressure in neonates: a physiological study. Pediatr Pulmonol. 2019;54:1039–44. https://doi.org/10.1002/ppul.24312.

    Article  PubMed  Google Scholar 

  41. Hooper SB, Te Pas AB, Lang J, Van Vonderen JJ, Roehr CC, Kluckow M, et al. Cardiovascular transition at birth: a physiological sequence. Pediatr Res. 2015;77:608–14. https://doi.org/10.1038/pr.2015.21.

    Article  PubMed  Google Scholar 

  42. Mandelbaum VHA, Alverson DC, Kirchgessner A, Linderkamp O. Postnatal changes in cardiac output and haemorrheology in normal neonates born at full term. Arch Dis Child. 1991;66:391–4. https://doi.org/10.1136/adc.66.4_Spec_No.391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wheatley CM, Snyder EM, Johnson BD, Olson TP. Sex differences in cardiovascular function during submaximal exercise in humans. Springerplus. 2014. https://doi.org/10.1186/2193-1801-3-445.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Singh Y, Tissot C. Echocardiographic evaluation of transitional circulation for the neonatologists. Front Pediatr. 2018;6:140. https://doi.org/10.3389/fped.2018.00140.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Heymann MA, Iwamoto HS, Rudolph AM. Factors affecting changes in the neonatal systemic circulation. Annu Rev Physiol. 1981;43:371–83. https://doi.org/10.1146/annurev.ph.43.030181.002103.

    Article  CAS  PubMed  Google Scholar 

  46. Escourrou G, Renesme L, Zana E, Rideau A, Marcoux MO, Lopez E, et al. How to assess hemodynamic status in very preterm newborns in the first week of life? J Perinatol. 2017;37:987–93. https://doi.org/10.1038/jp.2017.57.

    Article  CAS  PubMed  Google Scholar 

  47. de Boode WP. Clinical monitoring of systemic hemodynamics in critically ill newborns. Early Hum Dev. 2010;86:137–41. https://doi.org/10.1016/j.earlhumdev.2010.01.031.

    Article  PubMed  Google Scholar 

  48. Lalan S, Blowey D. Comparison between oscillometric and intra-arterial blood pressure measurements in ill preterm and full-term neonates. J Am Soc Hypertens. 2014;8:36–44. https://doi.org/10.1016/j.jash.2013.10.003.

    Article  PubMed  Google Scholar 

  49. Tran N, Hackett H, Cadaver C, Fichera S, Azen C. Comparison of calf and brachial blood pressures in infants: is there a difference between calf and brachial blood pressures? J Vasc Nurs. 2014;32:139–43. https://doi.org/10.1016/j.jvn.2014.03.003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank our patients’ parents for allowing their participation in this research.

Funding

No funds, Grants or other financial support was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LVW, JS; Methodology: LVW, W-PB, Formal analysis and investigation: LVW, CL; Writing—original draft preparation: LVW, JS, JL, W-PB; Writing—review and editing: LVW, JS, JL, W-PB, CL; Supervision: JS, JL, W-PB.

Corresponding author

Correspondence to Lizelle Van Wyk.

Ethics declarations

Conflict of interest

L Van Wyk declares that Amayezu Medical, South Africa, provided bioreactance monitors and sensors, but no monetary incentives were provided. WP de Boode declares research support by Cheetah Medical. Neither Amayezu Medical nor Cheetah Medical had any input into research design, statistical analysis or manuscript editing.

Ethical approval

Research was conducted in accordance with the World Medical Association Declaration of Helsinki. Research was approved by the Human Research Ethics Committee of the Stellenbosch University, Cape Town, South Africa.

Consent to participate

Parents of all study participants (neonates) provided written, informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Wyk, L., Smith, J., Lawrenson, J. et al. Bioreactance-derived haemodynamic parameters in the transitional phase in preterm neonates: a longitudinal study. J Clin Monit Comput 36, 861–870 (2022). https://doi.org/10.1007/s10877-021-00718-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-021-00718-9

Keywords

Navigation