Skip to main content
Log in

Engineered g-C3N4/MnO2 Nanocomposite for Exceptional Photocatalytic Methylene Blue Degradation and Robust Antibacterial Impact

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, we reported the simple one-step wet impregnation method of g-C3N4/MnO2 nanocomposites aimed at improving the photocatalytic degradation efficiency of methylene blue dye. The synthesized catalysts underwent comprehensive characterization using various techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) to investigate their physicochemical properties. Their photocatalytic performance was evaluated by the degradation of methylene blue (MB) dye under visible light irradiation. Consequently, the MnO2/g-C3N4 nanocomposite demonstrates superior photocatalytic degradation performance compared to both bare MnO2 and g-C3N4. This enhancement is attributed to the improved efficiency of charge carrier separation and interfacial charge transfer within the nanocomposite structure. The degradation efficiency of MnO2/g-C3N4 nanocomposite was found 89% of MB under visible light irradiation at 120 min. Meanwhile, the recyclability analysis demonstrated that the MnO2/g-C3N4 nanocomposite can be recycled four times. Furthermore, the substance demonstrated positive antibacterial activity against Escherichia coli, and Staphylococcus aureus bacterial strains. These findings suggest that the MnO2/g-C3N4 nanocomposite, with its dual roles as a photocatalyst and an antibacterial agent, has potential applications in environmental decontamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All obtained data during this work are included in this manuscript.

References

  1. R. Rajendran, O. Rojviroon, P. Arumugam, K. Natchimuthu, V. Vasudevan, J. Kannupaiyan, R. Muangmora, P. Phouheuanghong, T. Rojviroon, Design and fabrication of g-C3N4/Bi2S3 heterojunction photocatalysts for efficient organic pollutant degradation and antibacterial activity. Journal of Alloys and Compounds, 976, 173116 (2024).

    Article  CAS  Google Scholar 

  2. S. Suganthi, T. Sivakumar, P. Nethaji, S. Vignesh, T.H. Oh, Construction of graphitic carbon nitride coupled TiO2 heterostructured composite for enhanced photocatalytic performance towards organic pollutant degradation. Inorganic Chemistry Communications, 158, 111658 (2023).

    Article  CAS  Google Scholar 

  3. S. Ramasundaram, V. Manikandan, P. Vijayalakshmi, S. Devanesan, M.B. Salah, A.C. Ramesh Babu, A. Priyadharsan, T.H. Oh, S. Ragupathy, Synthesis and investigation on synergetic effect of activated carbon loaded silver nanoparticles with enhanced photocatalytic and antibacterial activities. Environmental Research, 233, 116431 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. L.V. Samarasinghe, S. Muthukumaran, K. Baskaran, Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review. Chemosphere, 349, 140818 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. S.P. Keerthana, R. Yuvakkumar, G. Ravi, S. Arunmetha, M. Thambidurai, D. Velauthapillai, Magnetically separable rare earth metal incorporated CdFe2O4 photocatalyst for degradation of cationic and azo dyes. Journal of Molecular Structure, 1302, 137479 (2024).

    Article  CAS  Google Scholar 

  6. U.P.S. Prabhakar, P. Shanmugam, S. Boonyuen, L.P. Chandrasekar, R. Pothu, R. Boddula, A.B. Radwan, N. Al-Qahtani, Non-covalent functionalization of surfactant-assisted graphene oxide with silver nanocomposites for highly efficient photocatalysis and anti-biofilm applications. Materials Science for Energy Technologies, 7, 205–215 (2024).

    Article  CAS  Google Scholar 

  7. S. Adhikari, D. Sarkar, Hydrothermal synthesis and electrochromism of WO3 nanocuboids. RSC Advances, 4, 20145–20153 (2014).

    Article  CAS  Google Scholar 

  8. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Rsc Advances, 4, 37003–37026 (2014).

    Article  CAS  Google Scholar 

  9. S. Parameswaran, R. Bakkiyaraj, P. Shanmugam, T. Venugopal, Solid combustion synthesis of MnO2/NiO/Ag nanocomposites for efficient degradation of methylene blue and their antibacterial activity. Chemical Physics, 575, 112077 (2023).

    Article  CAS  Google Scholar 

  10. R. Zeng, K. Lian, B. Su, L. Lu, J. Lin, D. Tang, S. Lin, X. Wang, Versatile synthesis of hollow metal sulfides via reverse cation exchange reactions for photocatalytic CO2 reduction. Angewandte Chemie International Edition, 60, 25055–25062 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. R. Zeng, L. Lin, H. Gong, Y. Li, J. Xu, L. Huang, W. Wang, S. Lin, D. Tang, S. Guo, Tuning the rate-determining step of uric acid electrooxidation over single-atom-site metal centers for high-performing sensing. Chem Catalysis, 3 (2023).

  12. Z. Yu, H. Gong, J. Xu, Y. Li, Y. Zeng, X. Liu, D. Tang, Exploiting Photoelectric Activities and Piezoelectric Properties of NaNbO3 Semiconductors for Point-of-Care Immunoassay. Analytical Chemistry, 94, 3418–3426 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. L. Huang, G. Cai, R. Zeng, Z. Yu, D. Tang, Contactless Photoelectrochemical Biosensor Based on the Ultraviolet–Assisted Gas Sensing Interface of Three-Dimensional SnS2 Nanosheets: From Mechanism Reveal to Practical Application. Analytical Chemistry, 94, 9487–9495 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Gao, Z. Yu, L. Huang, Y. Zeng, X. Liu, D. Tang, Photoinduced Electron Transfer Modulated Photoelectric Signal: Toward an Organic Small Molecule-Based Photoelectrochemical Platform for Formaldehyde Detection. Analytical Chemistry, 95, 9130–9137 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. D. Wang, F.-X. Yin, B. Cheng, Y. Xia, J.-G. Yu, W.-K. Ho, Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Metals, 40, 2369–2380 (2021).

    Article  CAS  Google Scholar 

  16. S.P. Kim, M.Y. Choi, H.C. Choi, Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Materials Research Bulletin, 74, 85–89 (2016).

    Article  CAS  Google Scholar 

  17. S. Kavitha, R. Ranjith, N. Jayamani, S. Vignesh, B. Palanivel, R. Djellabi, C. Bianchi, F.A. Alharthi, Fabrication of visible-light-responsive TiO2/α-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water. Journal of Materials Science: Materials in Electronics, 1–14, (2022).

  18. H. Far, M. Hamici, N. Brihi, K. Haddadi, M. Boudissa, T. Chihi, M. Fatmi, High-performance photocatalytic degradation of NiO nanoparticles embedded on α-Fe2O3 nanoporous layers under visible light irradiation. Journal of Materials Research and Technology, 19, 1944–1960 (2022).

    Article  CAS  Google Scholar 

  19. V.V. Pham, T.K. Truong, L.V. Hai, H.P.P. La, H.T. Nguyen, V.Q. Lam, H.D. Tong, T.Q. Nguyen, A. Sabbah, K.-H. Chen, S.-J. You, T.M. Cao, S-Scheme α-Fe2O3/g-C3N4 Nanocomposites as Heterojunction Photocatalysts for Antibiotic Degradation. ACS Applied Nano Materials, 5, 4506–4514 (2022).

    Article  CAS  Google Scholar 

  20. Y. Sun, W. Zhang, Q. Li, H. Liu, X. Wang, Preparations and applications of zinc oxide based photocatalytic materials. Advanced Sensor and Energy Materials, 2, 100069 (2023).

    Article  Google Scholar 

  21. K. Mahalakshmi, R. Ranjith, P. Thangavelu, M. Priyadharshini, B. Palanivel, M.A. Manthrammel, M. Shkir, B. Diravidamani, Augmenting the photocatalytic performance of direct Z-scheme Bi2O3/g-C3N4 nanocomposite. Catalysts, 12, 1544 (2022).

    Article  CAS  Google Scholar 

  22. R. Ranjith, V. Krishnakumar, S. Boobas, J. Venkatesan, J. Jayaprakash, An efficient photocatalytic and antibacterial performance of Ni/Ce–Codoped CdS nanostructure under visible light irradiation. ChemistrySelect, 3, 9259–9267 (2018).

    Article  CAS  Google Scholar 

  23. K. Thangavelu, R. Rajendran, S. Palanisamy, P. Arumugam, R. Thammasak, Powerful combination of FeWO4/g-C3N4 heterostructures for solar light driven photocatalytic degradation of tetracycline and its antibacterial activity. Materials Today Sustainability, 24, 100562 (2023).

    Article  Google Scholar 

  24. K. Zhang, S. Lv, Q. Zhou, D. Tang, CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sensors and Actuators B: Chemical, 307, 127631 (2020).

    Article  CAS  Google Scholar 

  25. Z. Yu, D. Tang, Artificial Neural Network-Assisted Wearable Flexible Sweat Patch for Drug Management in Parkinson’s Patients Based on Vacancy-Engineered Processing of g-C3N4. Analytical Chemistry, 94, 18000–18008 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. D.P. Sahoo, S. Patnaik, D. Rath, B. Nanda, K. Parida, Cu@ CuO promoted gC3N4/MCM-41: an efficient photocatalyst with tunable valence transition for visible light induced hydrogen generation. RSC advances, 6, 112602–112613 (2016).

    Article  CAS  Google Scholar 

  27. B. Nanda, A.C. Pradhan, K. Parida, A comparative study on adsorption and photocatalytic dye degradation under visible light irradiation by mesoporous MnO2 modified MCM-41 nanocomposite. Microporous and Mesoporous Materials, 226, 229–242 (2016).

    Article  CAS  Google Scholar 

  28. H.J. Kong, D.H. Won, J. Kim, S.I. Woo, Sulfur-Doped g-C3N4/BiVO4 Composite Photocatalyst for Water Oxidation under Visible Light. Chemistry of Materials, 28, 1318–1324 (2016).

    Article  CAS  Google Scholar 

  29. W. Zhao, T. She, J. Zhang, G. Wang, S. Zhang, W. Wei, G. Yang, L. Zhang, D. Xia, Z. Cheng, H. Huang, D.Y.C. Leung, A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism. Journal of Materials Science & Technology, 85, 18–29 (2021).

    Article  CAS  Google Scholar 

  30. A. Naseri, M. Samadi, A. Pourjavadi, S. Ramakrishna, A.Z. Moshfegh, Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal. Ceramics International, 47, 26185–26196 (2021).

    Article  CAS  Google Scholar 

  31. R. Acharya, K. Parida, A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. Journal of Environmental Chemical Engineering, 8, 103896 (2020).

    Article  CAS  Google Scholar 

  32. S. Panimalar, R. Uthrakumar, E.T. Selvi, P. Gomathy, C. Inmozhi, K. Kaviyarasu, J. Kennedy, Studies of MnO2/g-C3N4 hetrostructure efficient of visible light photocatalyst for pollutants degradation by sol-gel technique. Surfaces and Interfaces, 20, 100512 (2020).

    Article  CAS  Google Scholar 

  33. V. Ragupathi, M.A. Raja, P. Panigrahi, N. Ganapathi Subramaniam, CuO/g-C3N4 nanocomposite as promising photocatalyst for photoelectrochemical water splitting. Optik, 208 164569 (2020).

    Article  CAS  Google Scholar 

  34. V. V, J. K, M. Alsawalha, Z. Zhang, M.-L. Fu, B. Yuan, Rational design of full-spectrum visible-light-responsive bimetallic sulfide Bi2S3/CoS2 composites for high-efficiency photocatalytic degradation of naproxen and bacterial inactivation. Journal of Environmental Management, 348, 119246 (2023).

    Google Scholar 

  35. K. S, M. S, V. V, P. A, M. Alsawalha, T. Alomayri, B. Yuan, Facile green synthesis of ZnFe2O4/rGO nanohybrids and evaluation of its photocatalytic degradation of organic pollutant, photo antibacterial and cytotoxicity activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125835 (2021).

    Article  Google Scholar 

  36. K. Tamilarasu, R. Ranjith, A. Priyadharsan, T. Rojviroon, P. Maadeswaran, S. Suganya, C. Umarani, Hierarchical MoS2–SnS2@ g–C3N4 Nanocomposite as an Efficient and Sustainable Material for Environmental Remediation. Journal of Cluster Science, 1–13 (2023).

  37. A. Priyadharsan, R. Ranjith, N. Karmegam, G. Thennarasu, S. Ragupathy, T.H. Oh, S. Ramasundaram, Effect of metal doping and non-metal loading on light energy driven degradation of organic dye using ZnO nanocatalysts. Chemosphere, 330, 138708 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. S. Qadri, A. Ganoe, Y. Haik, Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of hazardous materials, 169, 318–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. P. Shanmugam, R.C. Ngullie, S. Meejoo Smith, S. Boonyuen, R. Boddula, R. Pothu, Visible-light induced photocatalytic removal of methylene blue dye by copper oxide decorated zinc oxide nanorods. Materials Science for Energy Technologies, 6, 359–367 (2023).

    Article  CAS  Google Scholar 

  40. P. Shanmugam, S.M. Smith, S. Boonyuen, A. Luengnaruemitchai, In-situ development of boron doped g-C3N4 supported SBA-15 nanocomposites for photocatalytic degradation of tetracycline. Environmental Research, 224, 115496 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. S. Parameswaran, P. Shanmugam, R. Bakkiyaraj, V. T, Fabrication and assessment of CuO and NiO-infused MnO2 nanocomposites: Characterization, methylene blue degradation, and antibacterial efficacy. Journal of Molecular Structure, 1303, 137560 (2024).

    Article  CAS  Google Scholar 

  42. J. Jeyaram, K. Varadharajan, B. Singaram, R. Rajendhran, Optical, photoconducting, thermal and anisotropic mechanical behaviours of benzimidazolium salicylate single crystals. Journal of Science: Advanced Materials and Devices, 2, 445–454 (2017).

    Google Scholar 

  43. S. Selvi, R. Rajendran, D. Barathi, N. Jayamani, Facile Synthesis of CeO2/CoWO4 Hybrid Nanocomposites for High Photocatalytic Performance and Investigation of Antimicrobial Activity. Journal of Electronic Materials, 50, 2890–2902 (2021).

    Article  CAS  Google Scholar 

  44. P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, 2D/2D g-C3N4/MnO2 Nanocomposite as a Direct Z-Scheme Photocatalyst for Enhanced Photocatalytic Activity. ACS Sustainable Chemistry & Engineering, 6, 965–973 (2018).

    Article  CAS  Google Scholar 

  45. A. Priyadharsan, R. Ranjith, N. Karmegam, G. Thennarasu, S. Ragupathy, T. Hwan Oh, S. Ramasundaram, Effect of metal doping and non-metal loading on light energy driven degradation of organic dye using ZnO nanocatalysts. Chemosphere, 330, 138708 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. M.R. Pradhan, D. Rath, R. Sethi, B.B. Nanda, B. Nanda, α-MnO2 modified exfoliated porous g-C3N4 nanosheet (2D) for enhanced photocatalytic oxidation efficiency of aromatic alcohols. Inorganic Chemistry Communications, 130, 108717 (2021).

    Article  CAS  Google Scholar 

  47. P. Suyana, P. Ganguly, B.N. Nair, S.C. Pillai, U.S. Hareesh, Structural and compositional tuning in g-C3N4 based systems for photocatalytic antibiotic degradation. Chemical Engineering Journal Advances, 8, 100148 (2021).

    Article  CAS  Google Scholar 

  48. G. A, P. A, P. T, V. G, G. S, R.K. K.A, M. P, Boosting the performance of solar light driven CeO2/BiVO4 anchored g-C3N4 nanocomposites: A systematic study toward the development of a photocatalytic and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 673, 131835 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their heartfelt thanks to the Faculty of Engineering at Rajamangala University of Technology Thanyaburi (RMUTT) for their invaluable assistance. Furthermore, the authors appreciate the financial support received from the NSRF through the Program Management Unit for Human Resources & Institutional Development Research and Innovation [Grant No. B13F660068]. In addition, the project was supported by Researchers Supporting Project number (RSPD2024R675), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Writing, review and editing, Conceptualization, Data curation, Investigation: M.K, P.A, J.T.S, S.C, T.R, P.M,. Formal analysis: M.H, G.P, B.D. Writing-review and editing: R.R. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ranjith Rajendran.

Ethics declarations

Ethical Approval

The manuscript is prepared in compliance with the Publishing Ethics Policy.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnasamy, M., Arumugam, P., Jayanthi, T.S. et al. Engineered g-C3N4/MnO2 Nanocomposite for Exceptional Photocatalytic Methylene Blue Degradation and Robust Antibacterial Impact. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02628-7

Keywords

Navigation