Skip to main content
Log in

Selenium Nanoparticles Synthesized and Stabilized by Fungal Extract Exhibit Enhanced Bioactivity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Selenium has many beneficial bioactive properties yet has a narrow therapeutic window. This problem can be addressed by selenium in nanoform or selenium nanoparticles (SeNPs). There are several chemical and physical approaches that can be employed for the synthesis of SeNPs. However, the biological route for SeNP synthesis is known to be more eco-friendly, economical, and biocompatible when assessing bioactivities. The present study demonstrates a biological approach that effectively facilitates the synthesis and stabilization of SeNPs with the help of secondary metabolites derived from endophytic fungi N. guilinensis i.e., NL(C)-SeNPs. The nanoparticles formed were characterized via various techniques i.e., UV-visible spectroscopy, FTIR, DLS, and TEM. The synthesized NL(C)-SeNPs were spherical with a size of 55 ± 7.0 nm. These capped SeNPs (NL(C)-SeNPs) show prominent bioactivity in terms of in-vitro anti-oxidant properties and anti-microbial activity on Escherichia coli, Enterobacter faecalis, and Staphylococcus aureus and antifungal activity on Aspergillus niger and Fusarium laterium. The results indicated NL(C)-SeNPs portray increased potential anti-oxidant and anti-microbial activity in a dose-dependent manner. Furthermore, their anti-cancer activity on the HepG2 cell line was also observed in a dose-dependent manner. However, additional studies related to the toxicity and synergistic effects of SeNPs, are required before their therapeutic applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be available on request.

Abbreviations

SeNPs:

Selenium nanoparticles

NL(C):

Fungal extract of endophytic fungal strain N. guilinensis isolated from Nerium oleander

NL(C)-SeNPs:

NL(C) capped selenium nanoparticles

TPC:

Total phenolic content

TFC:

Total flavanoid content

DLS:

Dynamic light scattering

TEM:

Transmission electron microscope

EDX:

Energy-dispersive x-ray

FTIR:

Fourier transformed infrared spectroscopy

XRD:

X-ray diffractometer

ABTS:

2,2′-Azino-bis-3-ethylbenzthiazoline-6-sulphonic acid

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MIC:

Minimum inhibitory concentration

MFC:

Minimum fungicidal concentration

References

  1. N. Bisht, P. Phalswal, and P. K. Khanna (2022). Mater. Adv. 3, 1415–1431.

    Article  CAS  Google Scholar 

  2. M. Das, K. H. Shim, S. S. A. An, and D. K. Yi (2011). Toxicol. Environ. Health. Sci. 3, 193–205.

    Article  Google Scholar 

  3. M. Guilger-Casagrande and R. de Lima (2019). Front. Bioeng. Biotechnol. 7, 287. https://doi.org/10.3389/fbioe.2019.00287.

    Article  Google Scholar 

  4. S. J. Amina and B. Guo (2020). Int. J. Nanomed. 15, 9823–9857.

    Article  CAS  Google Scholar 

  5. E. A. Skomorokhova, T. P. Sankova, I. A. Orlov, A. N. Savelev, D. N. Magazenkova, M. G. Pliss, A. N. Skvortsov, I. M. Sosnin, D. A. Kirilenko, I. V. Grishchuk, E. I. Sakhenberg, E. V. Polishchuk, P. N. Brunkov, A. E. Romanov, L. V. Puchkova, and E. Y. Ilyechova (2020). Nanotechnol. Sci. Appl. 13, 137–157. https://doi.org/10.2147/nsa.s287658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B. Yu, Y. Zhang, W. Zheng, C. Fan, and T. Chen (2012). Inorg. Chem. 51, 8956–8963. https://doi.org/10.1021/ic301050v.

    Article  CAS  PubMed  Google Scholar 

  7. H. Hariharan, A. Al-Dhabi, P. Karuppiah, and S. Kumar Rajaram (2012). Chalcogen. Letts. 9, 509–515.

    CAS  Google Scholar 

  8. H. Forootanfar, M. Adeli-Sardou, M. Nikkhoo, M. Mehrabani, B. Amir-Heidari, A. R. Shahverdi, and M. Shakibaie (2014). J. Trace. Elem. Med. Biol. 28, 75–79. https://doi.org/10.1016/j.jtemb.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  9. C. Ferro, H. F. Florindo, and H. A. Santos (2021). Adv. Healthc. Mater. 10, e2100598.

    Article  PubMed  Google Scholar 

  10. L. Y. Cruz, D. Wang, and J. Liu (2019). J. Photochem. Photobiol. B. 191, 123–127. https://doi.org/10.1016/j.jphotobiol.2018.12.008.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Zhang, J. Wang, and L. Zhang (2010). Langmuir 26, 17617–17623. https://doi.org/10.1021/la1033959.

    Article  CAS  PubMed  Google Scholar 

  12. Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, Stevanović MM (2021) Front. Bioeng. Biotechnol. 8. https://doi.org/10.3389/fbioe.2020.624621

  13. Shankar A, Kumar V, Kaushik NK, Kumar A, Malik V, Singh D, Singh B (2020) Curr. Opin. Green. Sustain. Chem. 3. https://doi.org/10.1016/j.crgsc.2020.100029

  14. J. R. Lloyd (2003). FEMS Microbiol. Rev. 27, 411–425.

    Article  CAS  PubMed  Google Scholar 

  15. C. E. Rosenfeld, J. A. Kenyon, B. R. James, and C. M. Santelli (2017). Geobiology 15, 441–452. https://doi.org/10.1111/gbi.12224.

    Article  CAS  PubMed  Google Scholar 

  16. K. Rajendran and S. Sen (2015). Pharm. Lett. 7, 37–42.

    Google Scholar 

  17. R. Javed, M. Usman, S. Tabassum, and M. Zia (2016). Appl. Surf. Sci. 386, 319–326. https://doi.org/10.1016/j.apsusc.2016.06.042.

    Article  ADS  CAS  Google Scholar 

  18. I. Mates, I. Antoniac, L. Vasile, S. Vicaş, M. Brocks, F. Luminita, C. Milea, A. G. Mohan, and S. Cavalu (2019). UPB. Sci. Bull. B: Chem. Mater 81, 205–216.

    CAS  Google Scholar 

  19. J. Kuo, C.-F. Chang, and W.-C. Chi (2021). Folia. Microbiol. 66, 385–397. https://doi.org/10.1007/s12223-021-00854-4.

    Article  CAS  Google Scholar 

  20. W.-C. Chi, K.-L. Pang, W.-L. Chen, G.-J. Wang, and T.-H. Lee (2019). Bot. Stud. 60, 4. https://doi.org/10.1186/s40529-019-0252-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Kuo, C.-F. Chang, and W.-C. Chi (2021). Folia. Microbiol. (Praha) 66, 385–397. https://doi.org/10.1007/s12223-021-00854-4.

    Article  CAS  PubMed  Google Scholar 

  22. M. Yadav, A. Yadav, and J. P. Yadav (2014). Asian. Pac. J. Trop. Med. 7, S256–S261. https://doi.org/10.1016/S1995-7645(14)60242-X.

    Article  Google Scholar 

  23. U. Prabhakar Joshi, R. DayaramWagh, and C. Author (2018). IOSR. J. Pharm. 13, 13–22. https://doi.org/10.9790/3008-1306021322.

    Article  Google Scholar 

  24. Samarasiri MH, Chandrasiri TA, Wijesinghe DB, Gunawardena SP (2019) Int. J. Food. Eng. 4, 293–299. https://doi.org/10.18178/ijfe.5.4.293-299

  25. Matur M, Madhyastha H, Shruthi TS, Madhyastha R, Srinivas SP, Navya PN, Daima HK (2020) Sci. Rep. 10.https://doi.org/10.1038/s41598-020-75465-z

  26. L. Shi, H. M. Ge, S. H. Tan, H. Q. Li, Y. C. Song, H. L. Zhu, and R. X. Tan (2007). Eur. J. Med. Chem. 42, 558–564. https://doi.org/10.1016/j.ejmech.2006.11.010.

    Article  CAS  PubMed  Google Scholar 

  27. Meletiadis J, Meis JFGM, Mouton JW, Donnelly JP, Verweij PE (2000) J. Clin. Microbio.l 38, 2949–2954. https://doi.org/10.1128/jcm.38.8.2949-2954.2000

  28. T. Fukuda, W. Naka, S. Tajima, and T. Nishikawa (1996). Journal of Medical and Veterinary Mycology 5, 353–356. https://doi.org/10.1080/02681219680000601.

    Article  Google Scholar 

  29. Sarfraz MH, Zubair M, Aslam B, Ashraf A, Siddique MH, Hayat S, Cruz JN, Muzammil S, Khurshid M, Sarfraz MF, Hashem A, Dawoud TM, Avila-Quezada GD, Abd_Allah EF (2023) Front. Microbiol. 14. https://doi.org/10.3389/fmicb.2023.1188743

  30. H. Farhat, F. Urooj, N. Sohail, M. Ansari, and S. Ehteshamul-Haque (2022). S. Afr. J. Bot. 146, 146–161. https://doi.org/10.1016/j.sajb.2021.10.011.

    Article  CAS  Google Scholar 

  31. Kumar V, Prasher IB (2022) (Undrew.) Murril. Nat Prod Res. 36, 6064-6068. https://doi.org/10.1080/14786419.2022.2043855

  32. I. Khan, K. Saeed, and I. Khan (2019). Arab. J. Chem. 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  33. J. Sarkar, P. Dey, S. Saha, and K. Acharya (2011). Micro. Nano. Lett. 6, 599–602. https://doi.org/10.1049/mnl.2011.0227.

    Article  CAS  Google Scholar 

  34. Sidhu AK, Verma N, Kaushal P (2022) Front. Nanotechnol. 3. https://doi.org/10.3389/fnano.2021.801620

  35. S. M. Amini and A. Akbari (2019). IET. Nanobiotechnol. 13, 771–777. https://doi.org/10.1049/iet-nbt.2018.5386.

    Article  PubMed  PubMed Central  Google Scholar 

  36. N. Shahabadi, S. Zendehcheshm, and F. Khademi (2021). Biotechnol. Rep. (Amst). 30, e00615–e00615. https://doi.org/10.1016/j.btre.2021.e00615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Muthu, V. Raju, V. B. Gopal, A. Gunasekaran, K. S. Narayan, S. Malairaj, M. Lakshmikanthan, N. Duraisamy, K. Krishnan, and P. Perumal (2019). SN Appl. Sci. 1, 1–9. https://doi.org/10.1007/s42452-019-1509-x.

    Article  CAS  Google Scholar 

  38. N. E. A. El-Naggar, M. H. Hussein, and A. A. El-Sawah (2018). Sci. Rep. 8, 1–20. https://doi.org/10.1038/s41598-018-27276-6.

    Article  CAS  Google Scholar 

  39. Zhang W, Zhang J, Ding D, Zhang L, Alexandre L, Deng S, Wang X, Li W, Zhang W, Zhang W, Zhang J, Ding D, Zhang L, Alexandre L, Deng S, Wang X, Li W Artif. Cells. Nanomed. Biotechnol. 46, 1463–1470. https://doi.org/10.1080/21691401.2017.1373657

  40. Gunti L, Dass RS, Kalagatur NK (2019) Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.00931

  41. K. S. Prasad and K. Selvaraj (2014). Biol. Trace. Elem. Res. 157, 275–283. https://doi.org/10.1007/s12011-014-9891-0.

    Article  CAS  PubMed  Google Scholar 

  42. K. Anu, G. Singaravelu, K. Murugan, and G. Benelli (2017). J. Clust. Sci. 28, 551–563. https://doi.org/10.1007/s10876-016-1123-7.

    Article  CAS  Google Scholar 

  43. S. Kannan, K. Mohanraj, K. Prabhu, S. Barathan, and G. Sivakumar (2014). Bull. Mater. Sci. 37, 1631–1635. https://doi.org/10.1007/s12034-014-0712-z.

    Article  CAS  Google Scholar 

  44. M. C. Zambonino, E. M. Quizhpe, F. E. Jaramillo, A. Rahman, N. S. Vispo, C. Jeffryes, and S. A. Dahoumane (2021). Int. J. Mol. Sci. 22, 1–34.

    Article  Google Scholar 

  45. Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu WC, Balasubramanian B, Arumugam M (2021) Sci. Rep. 11. https://doi.org/10.1038/s41598-020-80327-9

  46. C. H. Ramamurthy, K. S. Sampath, P. Arunkumar, M. S. Kumar, V. Sujatha, K. Premkumar, and C. Thirunavukkarasu (2013). Bioprocess. Biosyst. Eng. 36, 1131–1139. https://doi.org/10.1007/s00449-012-0867-1.

    Article  CAS  PubMed  Google Scholar 

  47. Kora AJ (2018) Bioresour. Bioprocess. 5. https://doi.org/10.1186/s40643-018-0217-5

  48. L. Liu, Q. Peng, and Y. Li (2008). Nano. Res. 1, 403–411. https://doi.org/10.1007/s12274-008-8040-5.

    Article  ADS  CAS  Google Scholar 

  49. Qiu W-Y, Wang Y-Y, Wang M, Yan J-K (2018) Colloids. Surf. B. 170, 692–700. https://doi.org/10.1016/j.colsurfb.2018.07.003

  50. K. Kokila, N. Elavarasan, and V. Sujatha (2017). New J. Chem. 41, 7481–7490. https://doi.org/10.1039/c7nj01124e.

    Article  CAS  Google Scholar 

  51. Y. Y. Wang, W. Y. Qiu, L. Sun, Z. C. Ding, and J. K. Yan (2018). Food. Biosci. 26, 177–184. https://doi.org/10.1016/j.fbio.2018.10.014.

    Article  CAS  Google Scholar 

  52. Wang H, Cheng H, Wang F, Wei D, Wang X (2010) J. Microbiol. Methods. 82, 330–333. https://doi.org/10.1016/j.mimet.2010.06.014

  53. Berridge MV, Herst PM, Tan AS (2005) Biotechnol. Annu. Rev. 11, 127-152.

  54. E. Grela, J. Kozłowska, and A. Grabowiecka (2018). Acta. Histochem. 120, 303–311.

    Article  CAS  PubMed  Google Scholar 

  55. Souza LM dos S, Dibo M, Sarmiento JJP, Seabra AB, Medeiros LP, Lourenço IM, Kobayashi RKT, Nakazato G (2022) Curr. Res. Green Sustain. Chem. 5. https://doi.org/10.1016/j.crgsc.2022.100303

  56. Arakha M, Saleem M, Mallick BC, Jha S (2015) Sci. Rep. 5. https://doi.org/10.1038/srep09578

  57. N. Mulla, S. Otari, R. Bohara, H. Yadav, and S. Pawar (2020). Mater. Lett. 264, 127353. https://doi.org/10.1016/j.matlet.2020.127353.

    Article  CAS  Google Scholar 

  58. Al-hakimi AN, Asnag GM, Alminderej F, Alhagri IA, Al-Hazmy SM, Abdallah EM (2022) Polym. Test. 116, 107794. https://doi.org/10.1016/j.polymertesting.2022.107794

  59. Fouda A, Hassan SED, Eid AM, Abdel‐Rahman MA, Hamza MF (2022) Sci. Rep. 12. https://doi.org/10.1038/s41598-022-15903-2

  60. Pierard GE, AJE, PC, & DDP (1997) Int. J. Cosmet. Sci. https://doi.org/10.1046/j.1467-2494.1997.171706.x

  61. A. Haddadian, F. F. Robattorki, H. Dibah, A. Soheili, E. Ghanbarzadeh, N. Sartipnia, S. Hajrasouliha, K. Pasban, R. Andalibi, M. H. Ch, A. Azari, A. Chitgarzadeh, A. B. Kashtali, F. Mastali, H. Noorbazargan, and A. Mirzaie (2022). Sci. Rep. 12, 21938. https://doi.org/10.1038/s41598-022-26400-x.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. M. H. Yazdi, M. Mahdavi, N. Setayesh, M. Esfandyar, and A. R. Shahverdi (2013). DARU J. Pharm. Sci 21, 33. https://doi.org/10.1186/2008-2231-21-33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

HM and NTP acknowledge the funding received from DST (DST/INT/JSPS/P-336/2021) and JSPS (JPJSBP120217716) under India-Japan Science Cooperation Program. NTP also acknowledges the support by the Centre of Excellence on Emerging Materials (CEEMS), TIET and SAI Labs, TIET Patiala, India for the seed-grant support and analytical services, respectively. The authors acknowledge the support given by Dr. B.N.Chudasama, Professor, Physics, in interpretation of data.

Author information

Authors and Affiliations

Authors

Contributions

AS carried out the entire experimental work with valuable suggestions and layouts from SKJ.

RP was involved in the planning and execution of the experimental work.

HM and NTP collaborated in conceptualizing the study and were funded to carry out the study.

Corresponding author

Correspondence to Nagaraja Tejo Prakash.

Ethics declarations

Ethical Approval

Ethical approval is not applicable and there are no competing interests associated with the study. Data will be available on request.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Jaiswal, S.K., Prakash, R. et al. Selenium Nanoparticles Synthesized and Stabilized by Fungal Extract Exhibit Enhanced Bioactivity. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02600-5

Keywords

Navigation