Skip to main content
Log in

Design of a New ZnCo2O4 Nanoparticles/Nitrogen-Rich g-C3N4 Sheet with Improved Photocatalytic Activity Under Visible Light

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study used an NH4Cl-induced low temperatures second-calcination approach to create a nitrogen-rich g-C3N4 sheet that was then used to support heterometallic spinel ZnCo2O4 nanoparticles. The as-prepared p–n heterojunction ZnCo2O4/nitrogen-rich g-C3N4 sheet was used as visible light-induced photocatalysts for the photodegradation of p-Nitrophenol. The photocatalysts were analyzed using a variety of methods, including XRD, FTIR, FE-SEM, TEM, PL, BET, and UV–Vis DRS. The combination of the ZnCo2O4 nanoparticles and the nitrogen-rich g-C3N4 sheet produces a large number of active sites that increase the absorption of visible light and further improve the photocatalytic activity. The ZnCo2O4/nitrogen-rich g-C3N4 sheet that was produced showed more photocatalytic activity under UV–Visible light than ZnCo2O4/g-C3N4, whereas the usage of nitrogen-rich g-C3N4 sheet considerably increases the reaction to visible light and accelerates carrier transfer. This study could offer a fresh method for creating artificial photocatalytic devices with excellent charge transfer efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data and code will be made available on request.

References

  1. Wang, Y., X. Wang, and M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie International Edition, 2012. 51(1): p. 68–89.

    Article  CAS  PubMed  Google Scholar 

  2. Tian, N., et al., Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy, 2017. 38: p. 72–81.

    Article  CAS  Google Scholar 

  3. Ran, J., et al., Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy & Environmental Science, 2015. 8(12): p. 3708–3717.

    Article  CAS  Google Scholar 

  4. Han, Q., et al., Significant enhancement of visible-light-driven hydrogen evolution by structure regulation of carbon nitrides. ACS nano, 2018. 12(6): p. 5221–5227.

    Article  CAS  PubMed  Google Scholar 

  5. Han, C., et al., Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental, 2014. 147: p. 546–553.

    Article  CAS  Google Scholar 

  6. Liu, G., et al., Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. Journal of the American Chemical Society, 2010. 132(33): p. 11642–11648.

    Article  CAS  PubMed  Google Scholar 

  7. Xia, X., et al., Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. Journal of Industrial and Engineering Chemistry, 2022. 105: p. 303–312.

    Article  CAS  Google Scholar 

  8. Ma, D., et al., Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chemical Engineering Journal, 2016. 290: p. 136–146.

    Article  CAS  Google Scholar 

  9. Hou, Y., et al., Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Advanced materials, 2013. 25(43): p. 6291–6297.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, F.-J., et al., A novel photofunctional g-C3N4/Ag3PO4 bulk heterojunction for decolorization of Rh. B. Chemical engineering journal, 2013. 228: p. 435–441.

    Article  CAS  Google Scholar 

  11. Al-nayili, A. and N.J. Muhammad, Perovskite’s LaNiMnO6/montmorillonite K10 nanocomposites: Synthesis and enhanced photocatalytic activity. Materials Science in Semiconductor Processing, 2023. 155: p. 107254.

    Article  CAS  Google Scholar 

  12. Z. H. Jabbar, et al (2022) A review study summarizes the main characterization techniques of nano-composite photocatalysts and their applications in photodegradation of organic pollutants. Environ Nanotechnol Monit Manag. 100765.

  13. Huang, H., et al., Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Advanced Materials, 2014. 26(30): p. 5160–5165.

    Article  CAS  PubMed  Google Scholar 

  14. Alwan, S.H., K.H. Salem, and H.A. Alshamsi, Visible light-driven photocatalytic degradation of Rhodamine B dye onto TiO2/rGO nanocomposites. Materials Today Communications, 2022. 33: p. 104558.

    Article  CAS  Google Scholar 

  15. Abdulhusain, Z.H., H.A. Alshamsi, and M. Salavati-Niasari, Silver and zinc oxide decorated on reduced graphene oxide: Simple synthesis of a ternary heterojunction nanocomposite as an effective visible-active photocatalyst. International Journal of Hydrogen Energy, 2022. 47(80): p. 34036–34047.

    Article  CAS  Google Scholar 

  16. Huang, Z.-F., et al., Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy, 2015. 12: p. 646–656.

    Article  CAS  Google Scholar 

  17. Jo, W. and J. Jang, K. j. Kong, HJ Kang, JY Kim, H. Jun, K. Parmar and JS Lee. Angew. Chem., Int. Ed, 2012. 51: p. 3147–3151.

    Article  CAS  Google Scholar 

  18. Jiang, J., et al., Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. Journal of Materials Science & Technology, 2022. 118: p. 15–24.

    Article  CAS  Google Scholar 

  19. Feng, J., et al., Coupling P nanostructures with P-doped g-C3N4 as efficient visible light photocatalysts for H2 evolution and RhB degradation. ACS Sustainable Chemistry & Engineering, 2018. 6(5): p. 6342–6349.

    Article  CAS  Google Scholar 

  20. Ding, Y., et al., Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022. 70: p. 236–247.

    Article  CAS  Google Scholar 

  21. Huang, Y., et al., Controlling carbon self-doping site of g-C3N4 for highly enhanced visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2019. 254: p. 128–134.

    Article  CAS  Google Scholar 

  22. Wang, M., et al., Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr (VI) reduction. Chinese journal of catalysis, 2020. 41(10): p. 1498–1510.

    Article  CAS  Google Scholar 

  23. Li, Q., et al., Sulfite activation by Fe-doped g-C3N4 for metronidazole degradation. Separation and Purification Technology, 2021. 272: p. 118928.

    Article  CAS  Google Scholar 

  24. Zhang, S., et al., Facile synthesis of nitrogen-deficient mesoporous graphitic carbon nitride for highly efficient photocatalytic performance. Applied Surface Science, 2019. 478: p. 304–312.

    Article  CAS  Google Scholar 

  25. Tang, H., et al., Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis. Chemical Engineering Journal, 2019. 374: p. 1064–1075.

    Article  CAS  Google Scholar 

  26. Zhou, Y., et al., N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon, 2016. 99: p. 111–117.

    Article  CAS  Google Scholar 

  27. Wang, W., et al., An overview on nitride and nitrogen-doped photocatalysts for energy and environmental applications. Composites Part B: Engineering, 2019. 172: p. 704–723.

    Article  CAS  Google Scholar 

  28. Zhang, J., et al., Sol processing of conjugated carbon nitride powders for thin-film fabrication. Angewandte Chemie, 2015. 127(21): p. 6395–6399.

    Article  Google Scholar 

  29. Chen, Y., et al., Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS applied materials & interfaces, 2014. 6(16): p. 14405–14414.

    Article  CAS  Google Scholar 

  30. Lee, J.H., et al., A highly active and durable Co–N–C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheets. Nanoscale, 2015. 7(23): p. 10334–10339.

    Article  CAS  PubMed  Google Scholar 

  31. Jung, H., T.-T. Pham, and E.W. Shin, Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts. Journal of Alloys and Compounds, 2019. 788: p. 1084–1092.

    Article  CAS  Google Scholar 

  32. Guan, B., et al., Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2014. 2(38): p. 16116–16123.

    Article  CAS  Google Scholar 

  33. Al-Abidy, M. and A. Al-Nayili, Enhancement of photocatalytic activities of ZnFe2O4 composite by incorporating halloysite nanotubes for effective elimination of aqueous organic pollutants. Environmental Monitoring and Assessment, 2023. 195(1): p. 190.

    Article  CAS  Google Scholar 

  34. M.A. Albo Hay Allah, and H.A. Alshamsi, (2022) Green synthesis of ZnO NPs using Pontederia crassipes leaf extract: characterization, their adsorption behavior and anti-cancer property. Biomass Convers Biorefinery. 1–14.

  35. G. A. Gbair, and H.A. Alshamsi (2022) Facile green synthesis of CuO-ZnO nanocomposites from Argyreia nervosa leaves extract for photocatalytic degradation of Rhodamine B dye. Biomass Convers Biorefinery. 1–16.

  36. Wu, X., et al., NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon, 2019. 153: p. 757–766.

    Article  CAS  Google Scholar 

  37. Qiu, Y., et al., Three-dimensional phosphorus-doped graphitic-C3N4 self-assembly with NH2-functionalized carbon composite materials for enhanced oxygen reduction reaction. Langmuir, 2016. 32(48): p. 12569–12578.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, J., et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015. 347(6225): p. 970–974.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, L., et al., Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation. Applied surface science, 2018. 436: p. 162–171.

    Article  CAS  Google Scholar 

  40. Yuan, Y.-J., et al., Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Applied Catalysis B: Environmental, 2019. 246: p. 120–128.

    Article  CAS  Google Scholar 

  41. Mary, A.J.C. and A.C. Bose, Surfactant assisted ZnCo2O4 nanomaterial for supercapacitor application. Applied Surface Science, 2018. 449: p. 105–112.

    Article  CAS  Google Scholar 

  42. Ge, L., Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts. Materials Letters, 2011. 65(17–18): p. 2652–2654.

    Article  CAS  Google Scholar 

  43. Fan, C., et al., Graphitic carbon nitride nanosheets obtained by liquid stripping as efficient photocatalysts under visible light. RSC advances, 2017. 7(59): p. 37185–37193.

    Article  CAS  Google Scholar 

  44. Lin, Q., et al., Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental, 2015. 163: p. 135–142.

    Article  CAS  Google Scholar 

  45. B. Sakintuna, Y. Yürüm, and S. Çetinkaya (2004)  Evolution of carbon microstructures during the pyrolysis of Turkish Elbistan lignite in the temperature range 700 – 1000 C. Energy fuels. 18(3), 883–888.

  46. Wu, X., et al., In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance. Applied Surface Science, 2018. 427: p. 645–653.

    Article  CAS  Google Scholar 

  47. Liu, W.-S., et al., Fabrication of TiO2 on porous gC3N4 by ALD for improved solar-driven hydrogen evolution. RSC advances, 2018. 8(54): p. 30642–30651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma, T.Y., et al., Proton-functionalized two‐dimensional graphitic carbon nitride nanosheet: an excellent metal‐/label‐free biosensing platform. Small, 2014. 10(12): p. 2382–2389.

    Article  CAS  PubMed  Google Scholar 

  49. Tang, Y., et al., Inorganic acid-derived hydrogen-bonded organic frameworks to form nitrogen-rich carbon nitrides for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017. 5(41): p. 21979–21985.

    Article  CAS  Google Scholar 

  50. Li, Y. and N. Chopra, Structural evolution of cobalt oxide–tungsten oxide nanowire heterostructures for photocatalysis. Journal of catalysis, 2015. 329: p. 514–521.

    Article  CAS  Google Scholar 

  51. Huang, Q., et al., Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Applied Surface Science, 2015. 358: p. 350–355.

    Article  CAS  Google Scholar 

  52. Zhu, B., et al., Isoelectric point and adsorption activity of porous g-C3N4. Applied Surface Science, 2015. 344: p. 188–195.

    Article  CAS  Google Scholar 

  53. Zhou, Z., et al., Dissolution and liquid crystals phase of 2D polymeric carbon nitride. Journal of the American Chemical Society, 2015. 137(6): p. 2179–2182.

    Article  CAS  PubMed  Google Scholar 

  54. Jiang, Z., et al., Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. Journal of Materials Chemistry A, 2016. 4(5): p. 1806–1818.

    Article  CAS  Google Scholar 

  55. Irshad, A., et al., Sol-gel assisted Ag doped NiAl2O4 nanomaterials and their nanocomposites with g-C3N4 nanosheets for the removal of organic effluents. Journal of Alloys and Compounds, 2022. 902: p. 163805.

    Article  CAS  Google Scholar 

  56. Khezami, L., et al., Harmonizing the photocatalytic activity of g-C3N4 nanosheets by ZrO2 stuffing: From fabrication to experimental study for the wastewater treatment. Biochemical Engineering Journal, 2022. 182: p. 108411.

    Article  CAS  Google Scholar 

  57. Xiao, X., et al., The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. Scientific reports, 2018. 8(1): p. 1–13.

    Article  Google Scholar 

  58. Lin, Z. and X. Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angewandte Chemie, 2013. 125(6): p. 1779–1782.

    Article  Google Scholar 

  59. Zhang, G., et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Advanced Materials, 2014. 26(5): p. 805–809.

    Article  CAS  PubMed  Google Scholar 

  60. Arumugham, T., et al., Nano CuO/g-C3N4 sheets-based ultrafiltration membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application. Journal of Environmental Sciences, 2019. 82: p. 57–69.

    Article  CAS  Google Scholar 

  61. Duan, Y., Facile preparation of CuO/g-C3N4 with enhanced photocatalytic degradation of salicylic acid. Materials Research Bulletin, 2018. 105: p. 68–74.

    Article  CAS  Google Scholar 

  62. M. K. Ajel, and A. Al-Nayili (2022) Synthesis, characterization of Ag-WO3/bentonite nanocomposites and their application in photocatalytic degradation of humic acid in water. Environ Sci Pollut Res. 1–15.

  63. Meng, Q., et al., In situ hydrothermal construction of direct solid-state nano-Z-scheme BiVO4/pyridine-doped g-C3N4 photocatalyst with efficient visible-light-induced photocatalytic degradation of phenol and dyes. ACS omega, 2017. 2(6): p. 2728–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mandal, B., P. Roy, and P. Mitra, Comparative study on organic effluent degradation capabilities and electrical transport properties of polygonal ZnCo2O4 spinels fabricated using different green fuels. Materials Science and Engineering: C, 2020. 117: p. 111304.

    Article  CAS  PubMed  Google Scholar 

  65. Guigoz, V., et al., Heterostructured thin LaFeO3/g-C3N4 films for efficient photoelectrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2020. 45(35): p. 17468–17479.

    Article  CAS  Google Scholar 

  66. Yi, S., et al., Study on photogenerated charge transfer properties and enhanced visible-light photocatalytic activity of p-type Bi 2 O 3/n-type ZnO heterojunctions. New Journal of Chemistry, 2015. 39(4): p. 2917–2924.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Chemistry Department of Al-Qadisiyah University is thanked by the authors for its assistance in terms of both technical and instrumental matters.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

AA: formal analysis, investigation, methodology, software, conceptualization, writing—review and editing, supervision, project administration, data curation. SAH: photocatalytic experiments, formal analysis, methodology.

Corresponding author

Correspondence to Abbas Al-Nayili.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Nayili, A., Haimd, S.A. Design of a New ZnCo2O4 Nanoparticles/Nitrogen-Rich g-C3N4 Sheet with Improved Photocatalytic Activity Under Visible Light. J Clust Sci 35, 341–358 (2024). https://doi.org/10.1007/s10876-023-02487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02487-8

Keywords

Navigation