Skip to main content
Log in

Carboxymethyl Cellouse Stabilized Cobalt Sulfide Nanoparticles: Preparation, Characterization and Application

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have developed a biological macromolecule stabilized method for the preparation of cobalt sulfide nanoparticles using carboxymethyl cellouse (CMC) as a stabilizing agent. We investigated the formation of cobalt sulfide nanoparticles as a function of different amounts of CMC. At 0.05% w/v amount of CMC, the high percentage of cube shaped cobalt sulfide nanoparticles is obtained. The samples obtained from 0.01% w/v and 0.1% w/v amounts of CMC shows random shaped cobalt sulfide nanoparticles and aggregated cobalt sulfide nanostructures, respectively. The obtained cobalt sulfide nanoparticles are stabilized through the interactions of hydroxyl (–OH) and carboxylate (–COO) functional groups in CMC. The CMC encapsulated cobalt sulfide nanoparticles were shown to have good catalytic activity for chemical reduction of p-nitroaniline in the presence of sodium borohydride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. G. W. C. Li and H. Shan (2014). Highly efficient metal sulfide catalysts for selective dehydrogenation of Isobutane to Isobutene. ACS Catal 4, 1139–1143. https://doi.org/10.1021/cs5000944.

    Article  CAS  Google Scholar 

  2. A. Gaiardo, B. Fabbri, V. Guidi, P. Bellutti, A. Giberti, S. Gherardi, L. Vanzetti, C. Malagù, and G. Zonta (2016). Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors 16, 296. https://doi.org/10.3390/s16030296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Hagfeldt and M. Grätzel (2000). Molecular photovoltaics. Acc. Chem. Res. 33, 269–277. https://doi.org/10.1021/ar980112j.

    Article  CAS  PubMed  Google Scholar 

  4. W. J. Parak, T. Pellegrino, and C. Plank (2005). Labelling of cells with quantum dots. Nanotechnology 16, R9–R25. https://doi.org/10.1088/0957-4484/16/2/R01.

    Article  CAS  PubMed  Google Scholar 

  5. C. H. Lai, M. Y. Lu, and L. J. Chen (2012). Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 22, 19–30. https://doi.org/10.1039/C1JM13879K.

    Article  CAS  Google Scholar 

  6. G. Govindasamya, P. Murugasenb, and S. Sagadevan (2017). Optical and electrical properties of chemical bath deposited cobalt sulphide thin films. Mater. Res. 20, 62–67. https://doi.org/10.1590/1980-5373-MR-2016-0441.

    Article  Google Scholar 

  7. N. Rumale, S. Arbuj, G. Umarji, M. Shinde, U. Mulik, P. Joy, and D. Amalnerkar (2015). Tuning magnetic behavior of nanoscale cobalt sulfide and its nanocomposite with an engineering thermoplastic. J. Electron. Mater. 44, 2308–2311. https://doi.org/10.1007/s11664-015-3753-1.

    Article  CAS  Google Scholar 

  8. R. Zahra, E. Pervaiz, M. Yang, O. Rabi, Z. Saleem, M. Ali, and S. Farrukh (2020). A review on nickel cobalt sulphide and their hybrids: earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int. J. Hydrogen En. 45, 24518–24543. https://doi.org/10.1016/j.ijhydene.2020.06.236.

    Article  CAS  Google Scholar 

  9. D. Ayodhya and G. Veerabhadram (2018). A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Mater. Today En. 9, 83–113. https://doi.org/10.1016/j.mtener.2018.05.007.

    Article  Google Scholar 

  10. Y. Cui, C. Zhou, X. Li, Y. Gao, and J. Zhang (2017). High performance electrocatalysis for hydrogen evolution reaction using nickel-doped CoS2 nanostructures: experimental and DFT insights. Electrochim. Acta 228, 428–435. https://doi.org/10.1016/j.electacta.2017.01.103.

    Article  CAS  Google Scholar 

  11. R. Akram, M. D. Khan, C. Zequine, X. Zhao, R. K. Guptha, M. Akhtar, J. Akhtar, M. A. Malik, N. Revaprasadu, and M. H. Bhatti (2020). Cobalt sulfide nanoparticles: synthesis, water splitting and supercapacitance studies. Mater. Sci. Semicond. Process. 109, 104925. https://doi.org/10.1016/j.mssp.2020.104925.

    Article  CAS  Google Scholar 

  12. J. Kim, H. Jin, A. Oh, H. Baik, S. H. Joo, and K. Lee (2017). Synthesis of compositionally tunable, hollow mixed metal sulphide CoxNiySz octahedral nanocages and their composition-dependent electrocatalytic activities for oxygen evolution reaction. Nanoscale 9, 15397–15406. https://doi.org/10.1039/C7NR04327A.

    Article  CAS  PubMed  Google Scholar 

  13. H. Y. He (2017). Efficient interface-induced effect of novel reduced graphene oxide-CoS heteronanostructures in enhancing photocatalytic activities. Appl. Surf. Sci. 42, 260–267. https://doi.org/10.1016/j.apsusc.2016.10.128.

    Article  CAS  Google Scholar 

  14. M. Xua, H. Niua, J. Huanga, J. Songa, C. Maoa, S. Zhanga, C. Zhub, and C. Chenc (2015). Facile synthesis of graphene-like Co3S4 nanosheet/Ag2S nanocomposite with enhanced performance in visible-light photocatalysis. Appl. Surf. Sci. 351, 374–378. https://doi.org/10.1016/j.apsusc.2015.05.158.

    Article  CAS  Google Scholar 

  15. N. Pradhan, A. Pal, and T. Pal (2001). Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 17, 1800–1802. https://doi.org/10.1021/la000862d.

    Article  CAS  Google Scholar 

  16. S. Kundu, S. Lau, and H. Liang (2009). Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods and nanoprisms. J. Phys. Chem. C 113, 5157–5163. https://doi.org/10.1021/jp811331z.

    Article  CAS  Google Scholar 

  17. I. Yoshiaki and K. Masa-ak (2000). Determination of p-phenylenediamine and related antioxidants in rubber boots by high performance liquid chromatography. Development of an analytical method for N-(1-methylheptyl)-N1-phenyl-p- phenylenediamine. J. Health Sci. 46, 467–473. https://doi.org/10.1248/jhs.46.467.

    Article  Google Scholar 

  18. L. Hsiao-Shu and L. Yu-Wen (2009). Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves. Ann. Occup. Hyg. 53, 289–296. https://doi.org/10.1093/annhyg/mep009.

    Article  CAS  Google Scholar 

  19. C.R. Barr, M. Pfaff (1971). Complexed p-phenylenediamine contain NG photographic element and development process therefor, USA patent-US3719492A

  20. J. Liu, F. He, T. M. Gunn, D. Zhao, and C. B. Roberts (2009). Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach. Langmuir 25, 7116–7128. https://doi.org/10.1021/la900228d.

    Article  CAS  PubMed  Google Scholar 

  21. S. J. Bao, C. M. Li, C. X. Guo, and Y. Qiao (2008). Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J. Power Sour. 180, 676–681. https://doi.org/10.1016/j.jpowsour.2008.01.085.

    Article  CAS  Google Scholar 

  22. G. Chen, W. Ma, D. Zhang, J. Zhu, and X. Liu (2013). Shape evolution and electrochemical properties of cobalt sulfide via a biomolecule-assisted solvothermal route. Solid State Sci. 17, 102–106. https://doi.org/10.1016/j.solidstatesciences.2012.08.025.

    Article  CAS  Google Scholar 

  23. V. Reddy, S. R. Toarti, D. Rajeswari, S. S. M. Reddy, and B. Sanjay (2021). Facile and scalable preparation of bovine serum albumin stabilized cobalt sulfide nanostructures with various morphologies. Coll. Interf. Sci. Commun. 42, 100403. https://doi.org/10.1016/j.colcom.2021.100403.

    Article  CAS  Google Scholar 

  24. K. R. Babu, J. J. Kumar, G. S. Bai, J. Singh, and V. Reddy (2021). Carboxymethyl cellulose stabilized lead sulfide nanocrystals: Synthesis, characterization and catalytic applications. Coll. Surf. A Physicochem. Eng. Aspects 620, 126572. https://doi.org/10.1016/j.colsurfa.2021.126572.

    Article  CAS  Google Scholar 

  25. V. Reddy (2017). Green synthesis of platinum and gold nanoparticles and their self-assembled nanostructures. Chem. Sci. Trans. 6, 417–427. https://doi.org/10.7598/cst2017.1333.

    Article  CAS  Google Scholar 

  26. J. Liu, J. Sutton, and C. B. Roberts (2007). Synthesis and extraction of monodisperse sodium carboxy methyl cellulose-stabilized platinum nanoparticles for the self-assembly of ordered arrays. J. Phys. Chem. C 111, 11566–11576. https://doi.org/10.1021/jp071967t.

    Article  CAS  Google Scholar 

  27. R. Ramachandran, M. Saranya, C. Santhosh, V. Velmurugan, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace (2014). Co9S8 nanoflakes on graphene (Co9S8/G) nanocomposites for high performance supercapacitors. RSC Adv. 4, 21151–21162. https://doi.org/10.1039/C4RA01515K.

    Article  CAS  Google Scholar 

  28. J. Tauc and A. Menth (1972). States in the gap. J. Nano-Cryst. Solids 569, 8–10. https://doi.org/10.1016/0022-3093(72)90194-9.

    Article  Google Scholar 

  29. M. B. Muradov, O. O. Balayeva, A. A. Azizov, A. M. Maharramov, L. R. Qahramanli, G. M. Eyvazova, and Z. A. Aghamaliyev (2018). Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method. Infrared Phys. Technol. 89, 255–262. https://doi.org/10.1016/j.infrared.2018.01.014.

    Article  CAS  Google Scholar 

  30. K. Y. Zou, Y. C. Liu, Y. F. Jiang, C. Y. Yu, M. L. Yue, and Z. X. Li (2017). Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-derived CoS2@CNTs with tunable pore diameters for supercapacitors. Inorg. Chem. 56, 6184–6196. https://doi.org/10.1021/acs.inorgchem.7b00200.

    Article  CAS  PubMed  Google Scholar 

  31. H. Zhou and J. Hu (2017). Facile synthesis of multi-walled carbon nanotubes/Co9S8 composites with enhanced performances for sodium-ion battery. Mater. Lett. 195, 26–30. https://doi.org/10.1016/j.matlet.2017.02.004.

    Article  CAS  Google Scholar 

  32. P. Cai, J. Huang, J. Chen, and Z. Wen (2017). Oxygen-incorporated amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew. Chem. Int. Ed. 56, 1–5. https://doi.org/10.1002/anie.201701280.

    Article  CAS  Google Scholar 

  33. Z. Jiang, W. Lu, Z. Li, K. Hung Ho, X. Xu Li, and D. C. Jiao (2014). Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors. J. Mater. Chem. A 2, 8603–8606. https://doi.org/10.1039/C3TA14430E.

    Article  CAS  Google Scholar 

  34. M. Kristl, B. Dojer, S. Gyergyek, and J. Kristl (2017). Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon 3, e00273. https://doi.org/10.1016/j.heliyon.2017.e00273.

    Article  PubMed  PubMed Central  Google Scholar 

  35. B. Mullamuri, B. S. Diwakar, K. C. S. B. Kasturi, and V. Reddy (2017). Facile synthesis of bovine serum albumin conjugated low-dimensional ZnS nanocrystals. Int. J. Biol. Macromol. 101, 729–735. https://doi.org/10.1016/j.ijbiomac.2017.03.164.

    Article  CAS  PubMed  Google Scholar 

  36. C. Zhang, Y.-Y. Fu, X. Zhang, C. Yu, Y. Zhao, and S.-K. Sun (2015). BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Dalton Trans. 44, 13112–13118. https://doi.org/10.1039/C5DT01467K.

    Article  CAS  PubMed  Google Scholar 

  37. V. Reddy, R. S. Torati, S. Oh, and C. G. Kim (2013). Biosynthesis of gold nanoparticles assisted by Sapindus mukorossi Gaertn fruit Pericarp and their catalytic application for the reduction of p-Nitroaniline. Indust. Eng. Chem. Res. 52, 556–564. https://doi.org/10.1021/ie302037c.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DST INSPIRE Faculty award of Dr. Venu Reddy (IFA13–ENG–70). Author JS acknowledges the DST INSPIRE Faculty award, New Delhi, and UGC New Delhi for financial support. Author JS also acknowledge Banaras Hindu University, Varanasi, for providing a seed grant under the Institute of Eminence (IoE) Dev. Scheme No. 6031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwakar, B.S., Rajeswari, D., Singh, J. et al. Carboxymethyl Cellouse Stabilized Cobalt Sulfide Nanoparticles: Preparation, Characterization and Application. J Clust Sci 34, 2429–2439 (2023). https://doi.org/10.1007/s10876-022-02394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02394-4

Keywords

Navigation