Skip to main content
Log in

Efficient oxidation of sulfides into sulfoxides catalyzed by a chitosan–Schiff base complex of Cu(II) supported on supramagnetic Fe3O4 nanoparticles

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Sulfoxides are versatile synthetic intermediates for the preparation of biological products. Therefore, there is a need for efficient methods to oxidize sulfides into sulfoxides. Such oxidation may be catalyzed by magnetic nanocatalysts due to their good stability, easy synthesis, high surface area, low toxicity and easy separation by magnetic forces. Here we prepared a nanocatalyst by immobilization of the chitosan–Schiff base complex on supramagnetic Fe3O4 nanoparticles. The chitosan–Schiff base complex has been previously prepared by functionalization of chitosan with 5-bromosalicylaldehyde and metalation with copper(II) acetate. The catalyst was characterized by Fourier transform infrared, powder X-ray diffraction, transmission electron microscope, scanning electron microscopy, energy-dispersive X-ray spectroscopy and thermogravimetric analysis. Results show that the Fe3O4 nanoparticles and nanocatalyst were spherical in shape with an average size of 20 nm. Upon the covalently anchoring of chitosan–Schiff base Cu complex on the magnetic Fe3O4 nanoparticles, the average size increased to 60 nm. The prepared Fe3O4–chitosan–Schiff base Cu complex catalyzed very efficiently the oxidation of sulfides to sulfoxides with 100 % selectivity in all cases under green reaction conditions and excellent yields. Additionally, ease of recovery and reusability up to four cycles without noticeable loss of catalytic activity make the present protocol beneficial from industrial and environmental viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bisogno FR, Rioz-Martnez A, Rodguez C, Lavandera I, de-Gonzalo G, Torres Pazmico DE, Fraaije MW, Gotor V (2010) Oxidoreductases working together: concurrent obtaining of valuable derivatives by employing the PIKAT method. Chem Cat Chem 2:946–949. doi:10.1002/cctc.201000115

    CAS  Google Scholar 

  • Buisson P, Quignard F (2002) Polysaccharides: natural polymeric supports for aqueous phase catalysts in the allylic substitution reaction. Aust J Chem 55:73–78. doi:10.1071/CH02004

    Article  CAS  Google Scholar 

  • Dai DY, Wang L, Chen Q, He MY (2014) Selective oxidation of sulfides to sulfoxides catalysed by deep eutectic solvent with H2O2. J Chem Res 38:183–185. doi:10.3184/174751914X13923144871332

    Article  CAS  Google Scholar 

  • Das R, Chakraborty D (2010) Cu(II)-catalyzed oxidation of sulfides. Tetrahedron Lett 51:6255–6258. doi:10.1016/j.tetlet.2010.09.081

    Article  CAS  Google Scholar 

  • Dreyer DR, Jia HP, Todd AD, Geng J, Bielawski CW (2011) Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org Biomol Chem 9:7292–7295. doi:10.1039/C1OB06102J

    Article  CAS  Google Scholar 

  • Ghorbani-Choghamarani A, Goudarziafshar H, Nikoorazm M, Yousefi S (2009) Efficient oxidation of sulfides to the sulfoxides using zirconium (IV) chloride, sodium nitrite and catalytic Amounts of bromide Ion as a novel oxidizing media. Lett Org Chem 6:335–339. doi:10.1002/chin.200946030

    Article  CAS  Google Scholar 

  • Gregori F, Nobili I, Bigi F, Maggi R, Predieri G, Sartori G (2008) Selective oxidation of sulfides to sulfoxides and sulfones using 30% aqueous hydrogen peroxide and silica-vanadia catalyst. J Mol Catal A: Chem 286:124–127. doi:10.1016/j.molcata.2008.02.004

    Article  CAS  Google Scholar 

  • Guo CC, Huang G, Zhang XB, Guo DC (2003) Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobic oxidation of cyclohexane in absence of reductants and solvents. Appl Catal A Gen 247:261–267. doi:10.1016/S0926-860X(03)00108-X

    Article  CAS  Google Scholar 

  • Herdt AR, Kim BS, Taton TA (2006) Encapsulated magnetic nanoparticles as supports for proteins and recyclable biocatalysts. Bioconjug Chem 18:183–189. doi:10.1021/bc060215j

    Article  Google Scholar 

  • Iranpoor N, Mohajer D, Rezaeifard AR (2004) Rapid and highly chemoselective biomimetic oxidation of organosulfur compounds with tetrabutylammonium peroxymonosulfate in the presence of manganese meso-tetraphenylporphyrin and imidazole. Tetrahedron Lett 45:3811–3815. doi:10.1016/j.tetlet.2004.03.082

    Article  CAS  Google Scholar 

  • Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60. doi:10.1002/adma.200600674

    Article  CAS  Google Scholar 

  • Kasaai MR (2009) Various methods for determination of the degree of N-acetylation of chitin and chitosan: a review. J Agric Food Chem 57:1667–1676. doi:10.1021/jf803001m

    Article  CAS  Google Scholar 

  • Khurana JM, Panda AK, Ray A, Gogia A (1996) Rapid oxidation of sulfides and sulfoxides with sodium hypochlorite. Org Prep Proced Int 28:234–236. doi:10.1080/00304949609356529

    Article  CAS  Google Scholar 

  • Kumar KS, Kumar VB, Paik P (2013) Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanopart. doi:10.1155/2013/672059

    Google Scholar 

  • Lakouraj MM, Tajbakhsh M, Shirini F, Tamami MVA (2005) HIO3 in the presence of wet SiO2: a mild and efficient reagent for selective oxidation of sulfides to sulfoxides under solvent-free conditions. Synth Commun 35:775–784. doi:10.1081/SCC-200050940

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  CAS  Google Scholar 

  • Lertworasirikul A, Tsue SI, Noguchi K, Okuyama K, Ogawa K (2003) Two different molecular conformations found in chitosan type II salts. Carbohydr Res 338:1229–1233. doi:10.1016/S0008-6215(03)00145-9

    Article  CAS  Google Scholar 

  • Polshettiwar V, Baruwati B, Varma RS (2009) Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst. Chem Commun. doi:10.1039/B900784A

    Google Scholar 

  • Safari J, Javadian L (2014) Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv 4:48973–48979. doi:10.1039/C4RA06618A

    Article  CAS  Google Scholar 

  • Shaabani A, Rezayan AH (2007) Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catal Commun 8:1112–1116. doi:10.1016/j.catcom.2006.10.033

    Article  CAS  Google Scholar 

  • Sharma SP, Suryanarayana MVS, Nigam AK, Chauhan AS, Tomar LNS (2009) [PANI/ZnO] composite: catalyst for solvent-free selective oxidation of sulfides. Catal Commun 10:905–912. doi:10.1016/j.catcom.2008.12.021

    Article  CAS  Google Scholar 

  • Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. doi:10.1016/j.addr.2008.03.018

    Article  CAS  Google Scholar 

  • Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93. doi:10.1016/j.carbpol.2003.08.005

    Article  CAS  Google Scholar 

  • Vincent T, Guibal E (2002) Chitosan-supported palladium catalyst. 1. Synthesis procedure. Ind Eng Res Chem 41:5158–5164. doi:10.1021/ie0201462

    Article  CAS  Google Scholar 

  • Xie HY, Zhen R, Wang B, Feng YJ, Chen P, Hao J (2010) Fe3O4/Au core/shell nanoparticles modified with Ni2+-nitrilotriacetic acid specific to histidine-tagged proteins. J Phys Chem C 114:4825–4830. doi:10.1021/jp910753f

    Article  CAS  Google Scholar 

  • Yu B, Liu AH, He LN, Li B, Diao ZF, Li YN (2012) Catalyst-free approach for solvent-dependent selective oxidation of organic sulphides with oxone. Green Chem 14:957–962. doi:10.1039/C2GC00027J

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding support received from the Ilam University, Ilam, Iran, on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naghipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghipour, A., Fakhri, A. Efficient oxidation of sulfides into sulfoxides catalyzed by a chitosan–Schiff base complex of Cu(II) supported on supramagnetic Fe3O4 nanoparticles. Environ Chem Lett 14, 207–213 (2016). https://doi.org/10.1007/s10311-015-0545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0545-z

Keywords

Navigation