Skip to main content
Log in

Fabrication of Green Synthesized SnO2–ZnO/Bentonite Nanocomposite for Photocatalytic Degradation of Organic Dyes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This paper proposes a simple and environmentally friendly method for the green synthesis of SnO2–ZnO/bentonite nanocomposite in the presence of Acroptilon repens flower extract as a reducing and stabilizing agent. The synthesized nanocomposite was characterized using various techniques to investigate their structural properties and morphology. The photocatalytic degradation of the organic dye, eriochrome black-T (EBT) under solar irradiation and in the presence of synthesized nanocomposite was investigated. The results indicated that the nanoparticles were well immobilized onto bentonite as a support with minimum agglomeration. Moreover, the results of photocatalytic reactions showed that SnO2–ZnO/bentonite nanocomposite could remove the dyes in just 2.5 h and the degradation efficiencies approached 100% indicating the excellent performance of the catalyst. The kinetic study revealed that degradation of EBT in presence of the SnO2–ZnO/bentonite nanocomposite obeys first-order kinetics with the rate constant of 1.75 × 10–2 min−1. Furthermore, the biosynthesized nanocomposite exhibited a stable performance and high tolerance to the reaction conditions and was reused in three cycles with negligible loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Nabipoor Hassankiadeh, M. Moghadamrezaee, M. Golmohammadi, and A. Naderifar (2015). Ag/Amberlyst 15: Novel Adsorbent for Removal Of Iodide Compounds from the Acetic Acid Solution. Chem. Eng. Commun. 202 (993–999), 2015. https://doi.org/10.1080/00986445.2014.880425.

    Article  CAS  Google Scholar 

  2. M. Hao, M. Qiu, H. Yang, B. Hu, and X. Wang (2021). Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total Environ. 760, 143333. https://doi.org/10.1016/j.scitotenv.2020.143333.

    Article  CAS  PubMed  Google Scholar 

  3. X. Liu, R. Ma, B. Hu, J. Chen, X. Liu, and X. Wang (2021). Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 51 (8), 751–790. https://doi.org/10.1080/10643389.2020.1734433.

    Article  CAS  Google Scholar 

  4. F. Moradnia, S. Taghavi Fardood, A. Ramezani, B. Min, S. W. Joo, and R. S. Varma (2021). Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: green sol-gel synthesis, characterization, and photocatalytic applications. J. Clean. 288, 125632. https://doi.org/10.1016/j.jclepro.2020.125632.

    Article  CAS  Google Scholar 

  5. I. K. Rind, N. Memon, M. Y. Khuhavar, and M. F. Lanjwani (2022). Thermally activated mango peels hydrochar for fixed-bed continuous flow decontamination of Pb(II) ions from aqueous solution. Int. J. Environ. Sci. Technol. 19, 2835–2850. https://doi.org/10.1007/s13762-021-03272-8.

    Article  CAS  Google Scholar 

  6. A. H. Alibak, M. Khodarahmi, P. Fayyazsanavi, S. M. Alizadeh, A. J. Hadi, and E. Aminzadehsarikhanbeglou (2022). Simulation the adsorption capacity of polyvinyl alcohol/carboxymethyl cellulose based hydrogels towards methylene blue in aqueous solutions using cascade correlation neural network (CCNN) technique. J. Clean. 337, 130509. https://doi.org/10.1016/j.jclepro.2022.130509.

    Article  CAS  Google Scholar 

  7. S. Xu, Y. Lv, X. Zeng, and D. Cao (2017). ZIF-derived nitrogen-doped Porous Carbons as Highly Efficient Adsorbents for Removal of Organic Compounds from Wastewater. Chem. Eng. J. 323, 502–511. https://doi.org/10.1016/j.cej.2017.04.093.

    Article  CAS  Google Scholar 

  8. F. Moeinpour, A. Alimoradi, and M. Kazemi (2014). Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles. J. Environ. Health Sci. Eng. 12, 112–118. https://doi.org/10.1186/s40201-014-0112-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Qiu, et al. (2022). Biochar for the removal of contaminants from soil and water: a review. Biochar. 19, 4. https://doi.org/10.1007/s42773-022-00146-1.

    Article  CAS  Google Scholar 

  10. S. Li, P. Yang, X. Liu, J. Zhang, and W. Xie (2019). Graphene oxide based dopamine mussel-like cross- linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. J. Mater. Chem. A. 7, 16902–16911. https://doi.org/10.1039/C9TA04562G.

    Article  CAS  Google Scholar 

  11. S. T. Fardood, et al. (2022). Facile green synthesis, characterization and visible light photocatalytic activity of MgFe2O4@CoCr2O4 magnetic nanocomposite. J. Photochem. Photobiol. A: Chem. 423, 113621. https://doi.org/10.1016/j.jphotochem.2021.113621.

    Article  CAS  Google Scholar 

  12. T. Lou, G. Cui, J. Xun, X. Wang, N. Feng, and J. Zhang (2018). “Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal”, Colloids Surfaces A Physicochem. Eng. Asp. 537, 149–154. https://doi.org/10.1016/j.colsurfa.2017.10.012.

    Article  CAS  Google Scholar 

  13. M. Qiu, B. Hu, Z. Chen, H. Yang, L. Zhuang, and X. Wang (2021). Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar 3, 117–123. https://doi.org/10.1007/s42773-021-00098-y.

    Article  CAS  Google Scholar 

  14. H. L. Shindume, et al. (2019). Enhanced Photocatalytic Activity of B, N-Codoped TiO2 by a New Molten Nitrate Process. J. Nanosci. Nanotechnol. 19, 839–849. https://doi.org/10.1166/jnn.2019.15745.

    Article  CAS  Google Scholar 

  15. D. Pan, et al. (2018). Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalt. Trans. 47, 9765–9778. https://doi.org/10.1039/c8dt01045e.

    Article  CAS  Google Scholar 

  16. B. Zhao, et al. (2018). Yeast-template synthesized Fe-doped cerium oxide hollow microspheres for visible photodegradation of acid orange 7. J. Colloid Interface Sci. 511, 39–47. https://doi.org/10.1016/j.jcis.2017.09.077.

    Article  CAS  PubMed  Google Scholar 

  17. S. Yu, et al. (2022). MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 811, 152280. https://doi.org/10.1016/j.scitotenv.2021.152280.

    Article  CAS  PubMed  Google Scholar 

  18. H. Ghaedamini and M. C. Amiri (2019). Effects of temperature and surfactant concentration on the structure and morphology of calcium carbonate nanoparticles synthesized in a colloidal gas aphrons system. J. Mol. Liq. 282, 213–220. https://doi.org/10.1016/j.molliq.2019.02.119.

    Article  CAS  Google Scholar 

  19. M. Nabipoor Hassankiadeh and A. Hallajisani (2020). Application of Molybdenum oxide nanoparticles in H2S removal from natural gas under different operational and geometrical conditions. Petrol. Sci. Eng. 190, 107131. https://doi.org/10.1016/j.petrol.2020.107131.

    Article  CAS  Google Scholar 

  20. H. Hu, J. H. Xin, H. Hu, X. Wang, D. Miao, and Y. Liu (2015). Synthesis and stabilization of metal nanocatalysts for reduction reactions - a review. J. Mater. Chem. A. 3, 11157–11182. https://doi.org/10.1039/c5ta00753d.

    Article  CAS  Google Scholar 

  21. L. Gnanasekaran, R. Hemamalini, and M. Naushad (2018). Efficient photocatalytic degradation of toxic dyes using nanostructured TiO2/ polyaniline nanocomposite. Desalin. Water Treat. 108, 322–328. https://doi.org/10.5004/dwt.2018.21967.

    Article  CAS  Google Scholar 

  22. Z. Ghasemi, H. Younesi, and A. A. Zinatizadeh (2016). Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano–TiO2 supported on Fe–ZSM-5. J. Taiwan. Inst. Chem. Eng. 65, 357–366. https://doi.org/10.1016/j.jtice.2016.05.039.

    Article  CAS  Google Scholar 

  23. K. Memnune and K. Ozturk (2020). Photocatalyst ZnO nanorod arrays on glass substrates: the critical role of seed layer in nanorod alignment and photocatalytic efficiencies. Chem. Eng. Commun. 207 (11), 1522–1535. https://doi.org/10.1080/00986445.2019.1660651.

    Article  CAS  Google Scholar 

  24. H. Ungan and T. Tekin (2020). Effect of the sonication and coating time on the photocatalytic degradation of TiO2, TiO2–Ag, and TiO2–ZnO thin film photocatalysts. Chem. Eng. Commun. 207, 896–903. https://doi.org/10.1080/00986445.2019.1630395.

    Article  CAS  Google Scholar 

  25. M. S. Nasrollahzadeh, M. Hadavifar, S. S. Ghasemi, and M. Arab Chamjangali (2018). Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions. Appl. Water Sci. 8, 104–116.

    Article  Google Scholar 

  26. A. Bhattacharjee, M. Ahmaruzzaman, and T. Sinha (2015). A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 136, 751–760. https://doi.org/10.1016/j.saa.2014.09.092.

    Article  CAS  Google Scholar 

  27. A. Bhattacharjee and M. Ahmaruzzaman (2015). “A green and novel approach for the synthesis of SnO2 nanoparticles and its exploitation as a catalyst in the degradation of methylene blue under solar radiation.” Mater. Lett. 145, 74–78. https://doi.org/10.1016/j.matlet.2015.01.029.

    Article  CAS  Google Scholar 

  28. D. Raoufi (2013). Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew. Energy 50, 932–937. https://doi.org/10.1016/j.renene.2012.08.076.

    Article  CAS  Google Scholar 

  29. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee (2003). Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes. Chem. Mater. 15, 305–318. https://doi.org/10.1021/cm020649y.

    Article  CAS  Google Scholar 

  30. Z. Wang, D. Song, J. Si, Y. Jiang, Y. Yang, and Y. Jiang (2018). One-step hydrothermal reduction synthesis of tiny Sn/SnO2 nanoparticles sandwiching between spherical graphene with excellent lithium storage cycling performances. Electrochim. Acta. 292, 72–80. https://doi.org/10.1016/j.electacta.2018.09.141.

    Article  CAS  Google Scholar 

  31. M. Golmohammadi, M. Rahmati-Abkenar, and S. Ghanbari (2022). A facile method for the synthesis of Metal oxide nanoparticles in supercritical water: optimized procedure for cerium oxide. J. Clust. Sci. 33, 887–893. https://doi.org/10.1007/s10876-021-02007-6.

    Article  CAS  Google Scholar 

  32. M. Aziz, S. Saber Abbas, and W. R. Wan Baharom (2013). Size-controlled synthesis of SnO2 nanoparticles by sol-gel method. Mater. Lett. 91, 31–34. https://doi.org/10.1016/j.matlet.2012.09.079.

    Article  CAS  Google Scholar 

  33. Ö. A. Yildirim and C. Durucan (2010). Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J. Alloys Compd. 506, 944–949. https://doi.org/10.1016/j.jallcom.2010.07.125.

    Article  CAS  Google Scholar 

  34. A. K. Chauhan, N. Kataria, and V. K. Grag (2020). Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation. Chemosphere 247, 125803. https://doi.org/10.1016/j.chemosphere.2019.125803.

    Article  CAS  PubMed  Google Scholar 

  35. Z. Liu, et al. (2022). Modified biochar: synthesis and mechanism for removal of environmental heavy metals. Carbon Res. 8, 1. https://doi.org/10.1007/s44246-022-00007-3.

    Article  Google Scholar 

  36. M. Golmohammadi, M. Nabipoor Hassankiadeh, and L. Zhang (2021). Facile biosynthesis of SnO2/ZnO nanocomposite using Acroptilon repens flower extract and evaluation of their photocatalytic activity. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.07.095.

    Article  Google Scholar 

  37. E. Haritha, S. M. Roopan, G. Madhavi, G. Elango, N. A. Al-Dhabi, and M. V. Arasu (2016). Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. J. Photochem. Photobiol. B Biol. 162, 441–447. https://doi.org/10.1016/j.jphotobiol.2016.07.010.

    Article  CAS  Google Scholar 

  38. A. Diallo, E. Manikandan, V. Rajendran, and M. Maaza (2016). Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J. Alloys Compd. 681, 561–570. https://doi.org/10.1016/j.jallcom.2016.04.200.

    Article  CAS  Google Scholar 

  39. J. C. Selvakumari, M. Ahila, M. Malligavathy, and D. P. Padiyan (2017). Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach. Int. J. Miner. Metall. Mater. 24, 1043–1051. https://doi.org/10.1007/s12613-017-1494-2.

    Article  CAS  Google Scholar 

  40. M. Golmohammadi, M. Honarmand, and A. Esmaeili (2022). Biosynthesis of ZnO nanoparticles supported on bentonite and the evaluation of its photocatalytic activity. Mater. Res. Bull. 149, 111714. https://doi.org/10.1016/j.materresbull.2021.111714.

    Article  CAS  Google Scholar 

  41. S. Yallappa, J. Manjanna, M. A. Sindhe, N. D. Satyanarayan, S. N. Pramod, and K. Nagaraja (2013). “Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract”, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 110, 108–115. https://doi.org/10.1016/j.saa.2013.03.005.

    Article  CAS  Google Scholar 

  42. B. Subash, B. Krishnakumar, M. Swaminathan, and M. Shanthi (2013). Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag–ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism. Langmuir 29, 939–949. https://doi.org/10.1021/la303842c.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Ku, Y.-H. Huang, and Y.-C. Chou (2011). Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr(VI) in aqueous solution. J. Mol. Catal. A Chem. 342–343, 18–22. https://doi.org/10.1016/j.molcata.2011.04.003.

    Article  CAS  Google Scholar 

  44. J. Nayak, S. N. Sahu, J. Kasuya, and S. Nozaki (2008). CdS–ZnO composite nanorods: Synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid. Appl. Surf. Sci. 254, 7215–7218. https://doi.org/10.1016/j.apsusc.2008.05.268.

    Article  CAS  Google Scholar 

  45. A. Hamrouni, H. Lachheb, and A. Houas (2013). Synthesis, characterization and photocatalytic activity of ZnO–SnO2 nanocomposites. Mater Sci Eng B. https://doi.org/10.1016/j.mseb.2013.08.008.

    Article  Google Scholar 

  46. B. Krishnakumar, B. Subash, and M. Swaminathan (2012). AgBr–ZnO – An efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light. Sep. Purif. Technol. 85, 35–44. https://doi.org/10.1016/j.seppur.2011.09.037.

    Article  CAS  Google Scholar 

  47. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka (1995). Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobiol. A: Chem. 85, 247–255. https://doi.org/10.1016/1010-6030(94)03906-B.

    Article  CAS  Google Scholar 

  48. A. Khalid, R. Khan, M. Ul-Islam, T. Khan, and F. Wahid (2017). Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym. 164, 214–221. https://doi.org/10.1016/j.carbpol.2017.01.061.

    Article  CAS  PubMed  Google Scholar 

  49. S. Ramanathan, S. P. Selvin, A. Obadiah, and A. Durairaj (2019). Synthesis of reduced graphene oxide/ZnO nanocomposites using grape fruit extract and Eichhornia crassipes leaf extract and a comparative study of their photocatalytic property in degrading Rhodamine B dye. J. Environ. Health Sci. Eng. 17, 195–207. https://doi.org/10.1007/s40201-019-00340-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. N. Sharanova, et al. (2021). Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. Plants 10 (7), 1279–1289. https://doi.org/10.3390/plants10071279.

    Article  CAS  Google Scholar 

  51. L. Zhirong, M. Azhar Uddin, and S. Zhanxue (2011). “FT-IR and XRD analysis of natural Nabentonite and Cu(II)-loaded Na-bentonite”, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 79, 1013–1016. https://doi.org/10.1016/j.saa.2011.04.013.

    Article  CAS  Google Scholar 

  52. M. Golmohammadi and M. Sattari (2022). Catalytic supercritical water oxidation of tri-n-butyl phosphate: Process optimization by response surface methodology and cytotoxicity assessment. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.08.200.

    Article  Google Scholar 

  53. M. Tangestanifard and H. S. Ghaziaskar (2017). Arenesulfonic Acid-Functionalized Bentonite as Catalyst in Glycerol Esterification with Acetic Acid. Catalysts 7 (7), 211–221. https://doi.org/10.3390/catal7070211.

    Article  CAS  Google Scholar 

  54. J. Tauc, Amorphous and Liquid Semiconductors (Springer, New York, 1974).

    Book  Google Scholar 

  55. M. Tamez Uddin, et al. (2012). Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 51 (14), 7764–7773.

    Article  Google Scholar 

  56. T. Chakraborty, A. Chakraborty, M. Shukla, and T. Chattopadhyay (2019). ZnO–Bentonite nanocomposite: an efficient catalyst for discharge of dyes, phenol and Cr(VI) from water. J. Coord. Chem. 72 (1), 53–68. https://doi.org/10.1080/00958972.2018.1560429.

    Article  CAS  Google Scholar 

  57. M. Toor, B. Jin, S. Dai, and V. Vimonses (2015). Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. J. Ind. Eng. Chem. 21, 653–661. https://doi.org/10.1016/j.jiec.2014.03.033.

    Article  CAS  Google Scholar 

  58. B. Krishnan and S. Mahalingam (2017). Ag/TiO2/bentonite nanocomposite for biological applications: Synthesis, characterization, antibacterial and cytotoxic investigations. Adv. Powder Technol. 28 (9), 2265–2280. https://doi.org/10.1016/j.apt.2017.06.007.

    Article  CAS  Google Scholar 

  59. S. K. Kansal, S. Sood, A. Umar, and S. K. Mehta (2013). Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J. Alloys Compd. 581, 392–397. https://doi.org/10.1016/j.jallcom.2013.07.069.

    Article  CAS  Google Scholar 

  60. I. Ali, M. L. Alharabi, A. Z. Alothman, and A. Y. Badjah (2018). Kinetics, Thermodynamics, and Modeling of Amido Black Dye Photodegradation in Water Using Co/TiO2 Nanoparticles. J. Photochem. Photobiol. 94 (5), 935–941. https://doi.org/10.1111/php.12937.

    Article  CAS  Google Scholar 

  61. M. Karimi-Shahsabadi, M. Behpour, A. Kazemi Babaheidari, and Z. Saberi (2017). Efficiently enhancing photocatalytic activity of NiO-ZnO doped onto nanozeoliteX by synergistic effects of p-n heterojunction, supporting and zeolite nanoparticles in photo-degradation of Eriochrome Black T and Methyl Orange. J. Photochem. Photobiol. 346, 133–143. https://doi.org/10.1016/j.jphotochem.2017.05.038.

    Article  CAS  Google Scholar 

  62. S. Zinatloo-Ajabshir and M. Salavati-Niasari (2017). Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep. Purif. Technol. 179, 77–85. https://doi.org/10.1016/j.seppur.2017.01.037.

    Article  CAS  Google Scholar 

  63. H. M. Gobara, R. A. Elsalamony, and S. A. Hassan (2016). Sonophotocatalytic degradation of eriochrome black-T dye in water using Ti grafted SBA-15. J. Porous. Mater. 23, 1311–1318. https://doi.org/10.1007/s10934-016-0190-3.

    Article  CAS  Google Scholar 

  64. M. F. Lanjwani, et al. (2022). Photocatalytic degradation of eriochrome black T dye by ZnO nanoparticles using multivariate factorial, kinetics and isotherm models. J Clust Sci. https://doi.org/10.1007/s10876-022-02293-8.

    Article  Google Scholar 

  65. L. Yao, H. Yang, Z. Chen, M. Qiu, B. Hu, and X. Wang (2021). Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 273, 128576. https://doi.org/10.1016/j.chemosphere.2020.128576.

    Article  CAS  Google Scholar 

  66. C. Vidya, M. N. Chandra Prabha, and M. A. L. Antony Raj (2016). Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye. Environ. Nanotechnol. Monit. Manag. 6, 134–138. https://doi.org/10.1016/j.enmm.2016.09.004.

    Article  Google Scholar 

  67. Y. Cai, et al. (2022). Application of covalent organic frameworks in environmental pollution management. Appl. Catal. 643, 118733. https://doi.org/10.1016/j.apcata.2022.118733.

    Article  CAS  Google Scholar 

  68. P. Compton, N. Rafei Dehkordi, M. Knapp, L. A. Fernandez, A. N. Alshawbkeh, and P. Larese-Casanova (2022). Heterogeneous fenton-like catalysis of electrogenerated H2O2 for dissolved RDX removal. Front Chem Eng. https://doi.org/10.3389/fceng.2022.864816.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Golmohammadi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golmohammadi, M., Nabipoor Hassankiadeh, M., AlHammadi, A. et al. Fabrication of Green Synthesized SnO2–ZnO/Bentonite Nanocomposite for Photocatalytic Degradation of Organic Dyes. J Clust Sci 34, 2275–2286 (2023). https://doi.org/10.1007/s10876-022-02379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02379-3

Keywords

Navigation