Skip to main content
Log in

Antibacterial Activity of Solvothermally Synthesized PVP/EDTA Encapsulated Zinc Sulphide Nanoparticles Embedded in Polyacrylonitrile (PAN) Electrospun Nanofibers

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present work, zinc sulphide (ZnS) nanoparticles are synthesized via solvothermal route using different capping agents. The sphalerite phase is detected by X-ray diffraction (XRD) analysis. The morphology of the nanoparticles is confirmed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The average particle size is found between 5 and 7 nm as calculated by HRTEM analysis. Energy dispersive X-ray spectroscopy (EDX) specified the desired elemental composition. Bandgap studies are done by UV–visible absorption and the photoluminescence spectroscopy (PL) gives the emission peaks centered at 452 nm and 460 nm. Fourier transform infra-red spectroscopy (FTIR) of ZnS nanoparticles confirmed the presence of various functional groups and showed the encapsulation of capping agents. The cylindrical non-woven network of PAN-ZnS nanofibers synthesized by electrospinning technique as confirmed by SEM and the distribution of nanoparticles in the polymer matrix is confirmed by HRTEM analysis. EDX and FTIR showed the incorporation of ZnS nanoparticles in polymer matrix. The objective of the present work is to synthesize the PAN-ZnS composite nanofibers for antibacterial applications. To the best of our knowledge this type of studies using polyacrylonitrile (PAN) as a polymer are not found in the literature showing the novelty of our work.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Nehra, & R. P. Chauhan, Antimicrobial activity of magnetic nanostructures, In Magnetic Nanostructures (Springer, Cham. 2019), pp. 301–318.

  2. R. Gomaji Chaudhary, J. A. Tanna, N. V. Gandhare, A. R. Rai, and H. D. Juneja (2015). Adv Mater Lett. https://doi.org/10.5185/amlett.2015.5901.

    Article  Google Scholar 

  3. S. Tang and J. Zheng (2018). Adv Healthc Mater. https://doi.org/10.1002/adhm.201701503.

    Article  PubMed  PubMed Central  Google Scholar 

  4. W. Salem, D. R. Leitner, F. G. Zingl, G. Schratter, R. Prassl, W. Goessler, et al. (2015). Int J Med Microbiol Suppl. https://doi.org/10.1016/j.ijmm.2014.11.005.

    Article  Google Scholar 

  5. Y. T. Prabhu, K. V. Rao, V. S. Sai, and T. Pavani (2017). J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2015.04.002.

    Article  Google Scholar 

  6. C. Kokkinos (2019). Nanomaterials. https://doi.org/10.3390/nano9101361.

    Article  PubMed  PubMed Central  Google Scholar 

  7. F. Huo, Y. Wang, C. You, W. Deng, F. Yang, and Y. Pu (2017). J Mater Sci. https://doi.org/10.1007/s10853-017-0797-z.

    Article  Google Scholar 

  8. S. Vijayan, C. S. Dash, G. Umadevi, M. Sundararajan, and R. Mariappan (2021). J Clust Sci. https://doi.org/10.1007/s10876-020-01923-3.

    Article  Google Scholar 

  9. N. Hebalkar, A. Lobo, S. R. Sainkar, S. D. Pradhan, W. Vogel, J. Urban, and S. K. Kulkarni (2001). J Mater Sci. https://doi.org/10.1023/A:1017910131081.

    Article  Google Scholar 

  10. P. Iranmanesh, S. Saeednia, and M. Nourzpoor (2015). Chin Phys B. https://doi.org/10.1088/1674-1056/24/4/046104.

    Article  Google Scholar 

  11. P. Agarwal (2021). Appl Phys A. https://doi.org/10.1007/s00339-020-04237-3.

    Article  Google Scholar 

  12. J. Geng and G. Song (2013). J Mater Sci. https://doi.org/10.1007/s10853-012-6767-6.

    Article  Google Scholar 

  13. N. Liu, L. Zhu, Z. Li, W. Liu, M. Sun, and Z. Zhou (2021). Biomater Sci. https://doi.org/10.1039/D1BM00782C.

    Article  PubMed  PubMed Central  Google Scholar 

  14. F. Bafande, M. Sheikh Arabi, Jorjani. Biomed. J. (2022) http://goums.ac.ir/jorjanijournal/article-1-879-en.html

  15. K. E. Mosaad, K. R. Shoueir, and M. M. Dewidar (2021). J Clust Sci. https://doi.org/10.1007/s10876-021-02195-1.

    Article  Google Scholar 

  16. T. C. Xu, D. H. Han, Y. M. Zhu, G. G. Duan, K. M. Liu, and H. Q. Hou (2021). Chin J Polym Sci. https://doi.org/10.1007/s10118-021-2516-0.

    Article  Google Scholar 

  17. S. Liu, H. Shan, S. Xia, J. Yan, J. Yu, and B. Ding (2020). ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c06922.

    Article  PubMed  PubMed Central  Google Scholar 

  18. X. Yang, B. Wang, D. Sha, Y. Liu, J. Xu, K. Shi, et al. (2021). Polymer. https://doi.org/10.1016/j.polymer.2020.123155.

    Article  Google Scholar 

  19. R. Sedghi, N. Sayyari, A. Shaabani, H. Niknejad, and T. Tayebi (2018). Polymer. https://doi.org/10.1016/j.polymer.2018.03.045.

    Article  Google Scholar 

  20. P. Zhu, H. Ou, Y. Kuang, L. Hao, J. Diao, and G. Chen (2020). ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c07995.

    Article  PubMed  PubMed Central  Google Scholar 

  21. H. M. Ibrahim and A. Klingner (2020). Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106647.

    Article  Google Scholar 

  22. C. Gualandi, A. Celli, A. Zucchelli & M. L. Focarete, Nanohybrid materials by electrospinning. In: Organic-inorganic hybrid nanomaterials (Springer, Berlin, 2014), pp. 87–142

  23. G. Panthi, R. Ranjit, S. Khadka, K. R. Gyawali, H. Y. Kim, and M. Park (2020). Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-020-00141-9.

    Article  Google Scholar 

  24. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing, Boston, 1956).

    Google Scholar 

  25. A.R. Stokes, A.J. Wilson, Proc. Phys. Soc. (1926–1948). https://doi.org/10.1088/0959-5309/56/3/303

  26. G. K. Williamson and R. E. Smallman (1956). Philos Mag. https://doi.org/10.1080/14786435608238074.

    Article  Google Scholar 

  27. G. B. Harris (1956). Mag J Sci Lond Edinb Dublin Philos. https://doi.org/10.1080/14786440108520972.

    Article  Google Scholar 

  28. X. Zhou, Q. Yang, H. Wang, F. Huang, J. Zhang, and S. Xu (2019). J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-018-0378-1.

    Article  Google Scholar 

  29. J. Tauc and A. Menth (1972). J Non-Cryst Solids. https://doi.org/10.1016/0022-3093(72)90194-9.

    Article  Google Scholar 

  30. H. Labiadh, K. Lahbib, S. Hidouri, S. Touil, and T. B. Chaabane (2016). Asian Pac J Trop Med. https://doi.org/10.1016/j.apjtm.2016.06.008.

    Article  PubMed  Google Scholar 

  31. G. Murugadoss and V. Ramasamy (2013). Luminescence. https://doi.org/10.1002/bio.2363.

    Article  PubMed  Google Scholar 

  32. D. C. Onwudiwe, C. A. Strydom, R. M. Vala, and L. Tichagwa (2015). SRIM-ON-MC. https://doi.org/10.1080/15533174.2013.862696.

    Article  Google Scholar 

  33. R. Nirmala, K. Jeon, R. Navamathavan, B. S. Kim, M. S. Khil, and H. Y. Kim (2013). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2013.01.057.

    Article  PubMed  Google Scholar 

  34. M. A. Aboelwafa, A. M. Abdelghany, and M. S. Meikhail (2021). Biointerf Res Appl Chem. https://doi.org/10.33263/BRIAC116.1433614343.

    Article  Google Scholar 

  35. E. K. Zarrindokht and C. Pegah (2011). Afr J Microbiol Res. https://doi.org/10.5897/AJMR10.159.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Lalita Rani) is thankful to UGC, New Delhi, India for the financial support provided in terms of Junior Research Fellowship. Authors acknowledge the Director, NIT Kurukshetra, India for providing various facilities in the department. We are also thankful to SAIF/CIL laboratory of Punjab University, Chandigarh for providing HRTEM facility.

Author information

Authors and Affiliations

Authors

Contributions

LR: Problem formulation, conceptualization, performed experiment, writing the original draft and prepare the final manuscript. R.P.C.: Helped in finalizing the problem and analysis of the results, review and editing.

Corresponding author

Correspondence to R. P. Chauhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, L., Chauhan, R.P. Antibacterial Activity of Solvothermally Synthesized PVP/EDTA Encapsulated Zinc Sulphide Nanoparticles Embedded in Polyacrylonitrile (PAN) Electrospun Nanofibers. J Clust Sci 34, 1789–1804 (2023). https://doi.org/10.1007/s10876-022-02353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02353-z

Keywords

Navigation