Skip to main content

Advertisement

Log in

Fabrication and characterization of poly(methyl methacrylate) composite nanofibers incorporated with zinc oxide and bismuth oxide nanoparticles and investigation of antibacterial activity

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, zinc oxide (ZnO) nanoparticle (NP) and bismuth oxide (Bi2O3) nanoparticles were synthesized by the thermal decomposition method. Different amounts of each NP (1% W/V, 3% W/V, and 5% W/V) were used separately to combine with polymethyl methacrylate (PMMA) to prepare composite nanofibers using a simple, fast, and cost-effective electrospinning method. Characterization of NPs and nanofibers was investigated by scanning electron microscopy (SEM) to determine morphology and size, energy dispersive X-ray (EDX) to check chemical structure, Fourier transform infrared spectroscopy (FTIR) to study functional groups, X-ray diffraction (XRD) to evaluate crystal structure, and dynamic light scattering (DLS) to show size and distribution size. According to the results, a mixture of 3% ZnO NPs and 3% Bi2O3 NPs incorporated in PMMA was selected as the best nanofiber due to smooth and fine morphology without any knot or adhesion with low diameter distributions. Based on the Debye–Scherrer equation, the average size was obtained for ZnO NPs, Bi2O3 NPs, and PMMA congaing 3% W/V ZnO NPs and 3% W/V Bi2O3 NP as 32.93, 76.82, and 21.52 nm, respectively. The hydrophilicity test was performed by measuring the contact angle of PMMA, PMMA congaing 3% W/V ZnO NPs, PMMA congaing 3% W/V Bi2O3 NPs, PMMA congaing 3% W/V ZnO NPs and 3% W/V Bi2O3 NPs, which were obtained 132.56°, 74.13°, 128.24°, and 132.70°, respectively. The result the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) show that PMMA congaing 3% W/V ZnO NPs, PMMA congaing 3% W/V Bi2O3 NPs can be inhibiting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. The fabricated composite nanofibers have good potential for the treatment of skin infections, tissue engineering, and biomedical and industrial applications as a transdermal antibacterial patch.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Y, Qiao W, Wang B, Zhang Y, Shao P, Yin T (2011) Electrospun composite nanofibers containing nanoparticles for the programmable release of dual drugs. Polym J 43:478–483

    Article  CAS  Google Scholar 

  2. Ullah S, Hashmi M, Soo Kim I (2022) Electrospun composite nanofibers for functional applications. Polymers 14:2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aruchamy K, Mahto A, Nataraj SK (2018) Electrospun nanofibers, nanocomposites and characterization of art: insight on establishing fibers as product. Nano-Struct Nano-Objects 16:45–58

    Article  CAS  Google Scholar 

  4. Tighzert W, Habi A, Ajji A, Sadoun T, Boukraa-Oulad Daoud F (2017) Fabrication and characterization of nanofibers based on poly(lactic acid)/chitosan blends by electrospinning and their functionalization with phospholipase A1. Fibers Polym 18:514–524

    Article  CAS  Google Scholar 

  5. Islam S, Chin Ang B, Andriyana A, Muhammad Afifi A (2019) A review on fabrication of nanofibers via electrospinning and their applications. SN Appl Sci 1:1248

    Article  Google Scholar 

  6. Ali U, Juhanni Bt K, Karim A, Aziah Buang N (2015) A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev 55:678–705

    Article  CAS  Google Scholar 

  7. Mariana Negrescu A, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A (2022) Metal oxide nanoparticles: review of synthesis, characterization and biological effects. J Funct Biomater 13(4):274

    Article  Google Scholar 

  8. Ahmed A, Singh A, Padha B, Sundramoorthy AK, Tomar A, Arya S (2022) UV–vis spectroscopic method for detection and removal of heavy metal ions in water using Ag doped ZnO nanoparticles. Chemosphere 303:135208

    Article  CAS  PubMed  Google Scholar 

  9. Nikolova MP, Chavali MS (2020) Metal oxide nanoparticles as biomedical materials. Biomimetics 5:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turrina C, Berensmeier S, Schwaminger SP (2021) Bare iron oxide nanoparticles as drug delivery carrier for the short cationic peptide lasioglossin. Pharmaceuticals 14:405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akbari A, Amini M, Tarassoli A, Eftekhari-Sis B, Ghasemian N, Jabbari E (2018) Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct Nano-Objects 14:19–48

    Article  CAS  Google Scholar 

  12. Ou G, Li Z, Li D, Cheng L, Liu Z, Wu H (2016) Photothermal therapy by using titanium oxide nanoparticles. Nano Res 9:1236–1243

    Article  CAS  Google Scholar 

  13. Abu-Dief AM (2020) Development of metal oxide nanoparticles as semiconductors. J Nanotechnol Nanomater 1:5–10

    Google Scholar 

  14. Chandekar KV, Shkir M, Khan A, Sayed MA, Alotaibi N, Alshahrani T, Algarni H, AlFaify S (2021) Significant and systematic impact of yttrium doping on physical properties of nickel oxide nanoparticles for optoelectronics applications. J Market Res 15:2584–2600

    CAS  Google Scholar 

  15. Gur T, Meydan I, Seckin H, Bekmezci M, Sen F (2022) Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ Res 204:111897

    Article  CAS  PubMed  Google Scholar 

  16. Kati FA (2019) Effect of the incorporation of zinc oxide nanoparticles on the flexural strength of auto-polymerized acrylic resins. J Oral Res 8:37–41

    Article  Google Scholar 

  17. Ramesh P, Saravanan K, Manogar P, Johnson J, Vinoth E, Mayakannan M (2021) Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sens Bio-Sens Res 31:100399

    Article  Google Scholar 

  18. Faisal S, Jan H, Ali Shah S, Shah S, Khan A, Taj Akbar M, Rizwan M, Jan WF, Akhtar N, Khattak A, Syed S (2021) Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega 6:9709–9722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Narayana A, Bhat SA, Fathima A, Lokesh SV, Suryad SG, Yelamaggad CV (2020) Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistorbased carbon monoxide sensing. RSC Adv 10:13532

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sheshmani S, Mardali M, Shahvelayati AS, Hajiaghababaei L (2023) ZnS and ZnS/ZnO assembly for photocatalytic removal of Reactive Red 66. Adv Environ Technol 9(3):165–173

    Google Scholar 

  21. Agarwal H, Shanmugam VK (2019) Synthesis and optimization of zinc oxide nanoparticles using Kalanchoe pinnata towards the evaluation of its anti-inflammatory activity. J Drug Deliv Sci Technol 54:101291

    Article  CAS  Google Scholar 

  22. Akbar A, Bilal Sadiq M, Ali I, Muhammad N, Rehman Z, Najam Khan M, Muhammad J, Ahmad Khan S, Ur Rehman F, Kumar Anal A (2019) Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatal Agric Biotechnol 17:36–42

    Article  Google Scholar 

  23. Chandrasekaran S, Anusuya S, Anbazhagan V (2022) Anticancer, anti-diabetic, antimicrobial activity of zinc oxide nanoparticles: a comparative analysis. J Mol Struct 1263:133139

    Article  CAS  Google Scholar 

  24. Norouzi Jobie F, Ranjbar M, Hajizadeh Moghaddam A, Kiani M (2021) Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv Powder Technol 32:2043–2052

    Article  CAS  Google Scholar 

  25. Anjum S, Hashim M, Asad Malik S, Khan M, Lorenzo JM, Haider Abbasi B, Hano C (2021) Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 13:4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaushik M, Niranjan R, Thangam R, Madhan B, Pandiyarasan V, Ramachandran C, Oh DH, Devanand Venkatasubbu G (2019) Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl Surf Sci 479:1169–1177

    Article  ADS  CAS  Google Scholar 

  27. La J, Huang Y, Luo G, Lai J, Liu C, Chu G (2013) Synthesis of bismuth oxide nanoparticles by solution combustion method. Part Sci Technol 31:287–290

    Article  CAS  Google Scholar 

  28. Zhou G, Huang Y, Wei D, Fan Z, JinSeo H (2020) Solvothermal synthesis, morphology, and optical properties of Bi2O3 and Bi/Bi2O2.75 powders. J Nanopart Res 22:15

    Article  CAS  Google Scholar 

  29. Bhimrao Koli P, Girdhar Shinde S, Haribhau Kapadnis K, Parashram Patil A, Panditrao Shinde M, Dharmraj Khairnar S, Bhikan Sonawane D, ShivajiIngale R (2021) Transition metal incorporated, modified bismuth oxide (Bi2O3) nano photo catalyst for deterioration of rosaniline hydrochloride dye as resource for environmental rehabilitation. J Indian Chem Soc 98:100225

    Article  Google Scholar 

  30. Shinde PV, Ghule BG, Shaikh SF, Shinde NM, Sangale SS, Jadhav VV, Yoon SY, Ho Kim K, Mane RS (2019) Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors. J Alloys Compd 802:244–251

    Article  CAS  Google Scholar 

  31. Jagdale P, Serino G, Oza G, Luigi Audenino A, Bignardi C, Tagliaferro A, Alvarez-Gayosso C (2021) Physical characterization of bismuth oxide nanoparticle based ceramic composite for future biomedical application. Materials (Basel) 14(7):1626

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Chinnappa Reddy B, Seenappa L, Manjunatha HC, Vidya YS, Sridhar KN, Mahendra Kumar C, Mahaboob Pasha U (2022) Study of antimicrobial applications of Bismuth Oxide. Mater Today Proc 57:112–115

    Article  CAS  Google Scholar 

  33. Yang S, Jiao S, Nie Y, Jiang T, Lu H, Liu S, Zhao Y, Gao S, Wang D, Wang J, Li Y (2022) Facile synthesis of bismuth nanoparticles for efficient self-powered broadband photodetector application. J Mater Sci Technol 126:161–168

    Article  ADS  CAS  Google Scholar 

  34. Mahmood NB, Saeed FR, Gbashi KR, Salama Mahmood U (2022) Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method. Mater Lett X 13:100126

    CAS  Google Scholar 

  35. Bulcha B, Leta Tesfaye J, Anatol D, Shanmugam R, Priyanka Dwarampudi L, Nagaprasad N, Nirmal Bhargavi VL, Krishnaraj R (2021) Synthesis of zinc oxide nanoparticles by hydrothermal methods and spectroscopic investigation of ultraviolet radiation protective properties. J Nanomater 2021:1

    Article  Google Scholar 

  36. Anu Ruba A, Johny LM, Nirmala Jothi NS, Sagayaraj P (2019) Solvothermal Synthesis, Characterization and Photocatalytic activity of ZnO Nanoparticle. Mater Today Proc 8:94–98

    Article  CAS  Google Scholar 

  37. Liu Z, Wang Q, Tan X, Zheng S, Zhang H, Wang Y, Gao S (2020) Solvothermal preparation of Bi/Bi2O3 nanoparticles on TiO2 NTs for the enhanced photoelectrocatalytic degradation of pollutants. J Alloy Compd 815:152478

    Article  CAS  Google Scholar 

  38. Nagaraju G, Shivaraju GC, Banuprakash G, Rangappa D (2017) Photocatalytic activity of ZnO nanoparticles: synthesis via solution combustion method. Mater Today Proc 4:11700–11705

    Article  Google Scholar 

  39. Astuti Y, Maria Listyani B, Suyati L, Darmawan A (2021) Bismuth oxide prepared by sol–gel method: variation of physicochemical characteristics and photocatalytic activity due to difference in calcination temperature. Indones J Chem 21:108–117

    Article  CAS  Google Scholar 

  40. Vishwakarma A, Pal Singh S (2020) Synthesis of zinc oxide nanoparticle by sol–gel method and study its characterization. Int J Res Appl Sci Eng Technol 8:1625–1627

    Article  Google Scholar 

  41. Somoghi R, Purcar V, Alexandrescu E, Catalina Gifu I, Mihaela Ninciuleanu C, Mihai Cotrut C, Oancea F, Stroescu H (2021) Synthesis of zinc oxide nanomaterials via sol–gel process with anti-corrosive effect for Cu, Al and Zn metallic substrates. Coatings 11:444

    Article  CAS  Google Scholar 

  42. Yazdanpanah A, Shahidi S, Dorranian D, Saviz Sh (2021) In situ synthesize of ZnO nanoparticles on cotton fabric by laser ablation method; antibacterial activities. J Text Inst 113:255–265

    Article  Google Scholar 

  43. Madler L, Pratsinis SE (2002) Bismuth oxide nanoparticles by flame spray pyrolysis. J Am Ceram Soc 85:1713–1718

    Article  CAS  Google Scholar 

  44. Hutera B, Kmita A, Olejnik E, Tokarski T (2013) Synthesis of ZnO nanoparticles by thermal decomposition of basic zinc carbonate. Arch Metall Mater 58:489–491

    Article  CAS  Google Scholar 

  45. Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 3(17):191–214

    Article  Google Scholar 

  46. Al-Bataineh QM, Ahmad AA, Alsaad AM, Telfah AD (2021) Optical characterizations of PMMA/metal oxide nanoparticles thin films: band gap engineering using a novel derived model. Heliyon 7:e05952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maji TK, Kitagawa S (2007) Chemistry of porous coordination polymers. Pure Appl Chem 79:2155–2177

    Article  CAS  Google Scholar 

  48. Kitagawa S, Matsuda R (2007) Chemistry of coordination space of porous coordination polymers. Coord Chem Rev 251:2490–2509

    Article  CAS  Google Scholar 

  49. Polarz S, Smarsly B (2002) Nanoporous materials. Nanosci Nanotechnol 2(6):581–612

    CAS  Google Scholar 

  50. Hajiashrafi S, Motakef-Kazemi N (2019) Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon 5:e02152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Darezereshki E, Alizadeh M, Bakhtiari F, Schaffie M, Ranjbar M (2011) A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Appl Clay Sci 54:107–111

    Article  CAS  Google Scholar 

  52. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS, Zahedi MM, Rahimi-Nasrabadi M (2013) Facile synthesis of zinc carbonate and zinc oxide nanoparticles via direct carbonation and thermal decomposition. Ceram Int 39:819–827

    Article  CAS  Google Scholar 

  53. Motakef-Kazemi N, Rashidian M, TaghizadehDabbagh S, Yaqoubi M (2020) Synthesis and characterization of bismuth oxide nanoparticles by thermal decomposition of bismuth-based MOF and evaluation of its nanocomposite. IJCCE 40(1):11–19

    Google Scholar 

  54. Abbasian M, Khakpour Ali N, Esmaeily Shoja S (2013) Synthesis of poly (methyl methacrylate)/zinc oxide nanocomposite with core-shell morphology by atom transfer radical polymerization. J Macromol Sci Part A Pure Appl Chem 50:966–975

    Article  CAS  Google Scholar 

  55. Jayarambabu N, Siva Kumari B, Venkateswara Rao K, Prabhu YT (2014) Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int J Curr Eng Technol 4:3411–3416

    Google Scholar 

  56. Goswami M, Adhikary NC, Bhattacharjee S (2018) Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method. Optik 158:1006–1015

    Article  ADS  CAS  Google Scholar 

  57. Prema Rajendran S, Sengodan K (2017) Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J Nanosci 2017:1–7

    Article  Google Scholar 

  58. Jurablu S, Farahmandjou M, Firoozabadi TP (2015) Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties. J Sci Islam Repub Iran 26:281–285

    Google Scholar 

  59. Kumar Trivedi M, Mohan Tallapragada R, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Evaluation of atomic, physical, and thermal properties of bismuth oxide powder: an impact of biofield energy treatment. Am J Nano Res Appl 3:94–98

    Google Scholar 

  60. Jabeen Fatima MJ, Niveditha CV, Sindhu S (2015) α-Bi2O3 photoanode in DSSC and study of the electrode–electrolyte interface. RSC Adv 5:78299–78305

    Article  CAS  Google Scholar 

  61. Dukali RM, Radovic IM, Stojanovic DB, Ševic DM, Radojevic VJ, Jocic DM, Aleksic RR (2014) Electrospinning of the laser dye rhodamine B-doped poly(methyl methacrylate) nanofibers. J Serb Chem Soc 79:867–880

    Article  CAS  Google Scholar 

  62. Aziz SB, Gh Abdullah O, Hussein AM, Ahmed HM (2017) From insulating PMMA polymer to conjugated double bond behavior: Green chemistry as a novel approach to fabricate small band gap polymers. Polymers 9:626

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mas Haris MRH, Kathiresanb S, Mohan S (2010) FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate. Der Pharma Chemica 2:316–323

    Google Scholar 

  64. Youssef A, EL-Nagar I, El-Torky A, El-Fettouh Abd El-Hakim A (2019) Preparation and characterization of PMMA nanocomposites based on ZnO-NPs for antibacterial packaging applications. In: Proceedings of the 5th world congress on new technologies 2019, pp 1–13

  65. Sabouri MR, Sohrabi MR, Zeraatkar Moghaddam A (2020) A novel and efficient dyes degradation using bentonite supported Zero-Valent Iron-based nanocomposites. ChemistrySelect 5:369–378

    Article  CAS  Google Scholar 

  66. Hebbar RS, Isloor AM, Ismail AF (2017) Contact angle measurements. Membr Charact 12:219–255

    Article  Google Scholar 

  67. Hezma AM, Rajeh A, Mannaa MA (2019) An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surf A 581:123821

    Article  CAS  Google Scholar 

  68. Yudaev P, Chuev V, Klyukin B, Kuskov A, Mezhuev Y (2022) Evgeniy Chistyakov, polymeric dental nanomaterials. Antimicrob Action Polym 14(5):864

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Farzad Rahmani for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Motakef Kazemi.

Ethics declarations

Conflict of interest

The authors declare that no financial or other potential conflict of study exist with regard to study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setayeshi, S., Motakef Kazemi, N. & Ziyadi, H. Fabrication and characterization of poly(methyl methacrylate) composite nanofibers incorporated with zinc oxide and bismuth oxide nanoparticles and investigation of antibacterial activity. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05207-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05207-y

Keywords

Navigation