Skip to main content
Log in

Rose Bengal Anchored Silica-Magnetite Nanocomposite as Photosensitizer for Visible- Light-Mediated Oxidation of Thioethers

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Visible-light-mediated photocatalysis along with magnetic recycling of the catalyst are well accepted as sustainable and environmentally benign pathway for green synthesis. Herein we report a covalently bonded rose bengal with amine functionalized silica-magnetite nanocomposites as a magnetically recyclable photocatalyst, which act as a photosensitizer when illuminated with green LED of wavelength 520 nm. Initially, iron oxide nanoparticles were synthesized, and it was coated with amine functionalized silica via ultrasound assisted method. Subsequently, rose bengal was covalently linked to the amine functionalized silica-magnetite nanocomposites. The size and morphology of the catalyst material was investigated using HRTEM analysis and it was observed that a spherical shaped silica-magnetite nanocomposites of size around 150 nm with monodispersed particles were formed. Further, the coating of silica, linkage of rose bengal and the magnetic property of the nanocomposite were confirmed using XRD, VSM, FTIR and TGA techniques. The catalytic efficacy of RB@NH2-SiO2-Fe3O4 was employed for the oxidation of a series of thioethers under visible light irradiation. This catalyst competently oxidized a variety of thioethers under ambient condition with excellent yield and it was successfully recycled for seven times without any significant loss in the activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. H. Guo, H. Xia, X. Ma, et al. (2020). Efficient photooxidation of sulfides with amidated alloxazines as heavy-atom-free photosensitizers. ACS Omega 5, 10586–10595. https://doi.org/10.1021/acsomega.0c01087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Z. Xing, M. Yang, H. Sun, et al. (2018). Visible-light promoted dithioacetalization of aldehydes with thiols under aerobic and photocatalyst-free conditions. Green Chem. 20, 5117–5122. https://doi.org/10.1039/c8gc02237b.

    Article  CAS  Google Scholar 

  3. F. Strieth-Kalthoff, M. J. James, M. Teders, et al. (2018). Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202. https://doi.org/10.1039/c8cs00054a.

    Article  CAS  PubMed  Google Scholar 

  4. X. Yang, S. Zhang, P. Li, et al. (2020). Visible-light-driven photocatalytic selective organic oxidation reactions. J. Mater. Chem. A 8, 20897–20924.

    Article  CAS  Google Scholar 

  5. K. Sun, Q. Y. Lv, X. L. Chen, et al. (2021). Recent advances in visible-light-mediated organic transformations in water. Green Chem. 23, 232–248.

    Article  CAS  Google Scholar 

  6. C. Bian, A. K. Singh, L. Niu, et al. (2017). Visible-light-mediated oxygenation reactions using molecular oxygen. Asian J. Org. Chem. 6, 386–396.

    Article  CAS  Google Scholar 

  7. Y. Qi, Q. Xu, G. Tu, et al. (2020). Vanadium oxides anchored on nitrogen-incorporated carbon: an efficient heterogeneous catalyst for the selective oxidation of sulfide to sulfoxide. Catal Commun. https://doi.org/10.1016/j.catcom.2020.106101.

    Article  Google Scholar 

  8. C. Ye, Y. Zhang, A. Ding, et al. (2018). Visible light sensitizer-catalyzed highly selective photo oxidation from thioethers into sulfoxides under aerobic condition. Sci Rep. https://doi.org/10.1038/s41598-018-20631-7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. Maleki and T. Kari (2018). Novel leaking-free, green, double core/shell, palladium-loaded magnetic heterogeneous nanocatalyst for selective aerobic oxidation. Catal. Lett. 148, 2929–2934. https://doi.org/10.1007/s10562-018-2492-3.

    Article  CAS  Google Scholar 

  10. K. Kaczorowska, Z. Kolarska, K. Mitka, and P. Kowalski (2005). Oxidation of sulfides to sulfoxides. Part 2: oxidation by hydrogen peroxide. Tetrahedron 61, 8315–8327.

    Article  CAS  Google Scholar 

  11. J. Li, Z. An, J. Sun, et al. (2020). Highly selective oxidation of organic sulfides by a conjugated polymer as the photosensitizer for singlet oxygen generation. ACS Appl. Mater. Interfaces 12, 35475–35481. https://doi.org/10.1021/acsami.0c10162.

    Article  CAS  PubMed  Google Scholar 

  12. A. Maleki, R. Rahimi, and S. Maleki (2016). Efficient oxidation and epoxidation using a chromium(VI)-based magnetic nanocomposite. Environ. Chem, Lett. 14, 195–199. https://doi.org/10.1007/s10311-016-0558-2.

    Article  CAS  Google Scholar 

  13. M. Azizi, A. Maleki, F. Hakimpoor, et al. (2017). A mild, efficient and highly selective oxidation of sulfides to sulfoxides catalyzed by lewis acid–urea–hydrogen peroxide complex at room temperature. Catal. Lett. 147, 2173–2177. https://doi.org/10.1007/s10562-017-2126-1.

    Article  CAS  Google Scholar 

  14. M. Azizi, A. Maleki, and F. Hakimpoor (2017). Solvent, metal and halogen-free synthesis of sulfoxides by using a recoverable heterogeneous urea-hydrogen peroxide silica-based oxidative catalytic system. Catal. Commun. 100, 62–65. https://doi.org/10.1016/j.catcom.2017.06.014.

    Article  CAS  Google Scholar 

  15. A. Shaabani and A. H. Rezayan (2007). Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catal. Commun. 8, 1112–1116. https://doi.org/10.1016/j.catcom.2006.10.033.

    Article  CAS  Google Scholar 

  16. X. Lang, W. Hao, W. R. Leow, et al. (2015). Tertiary amine mediated aerobic oxidation of sulfides into sulfoxides by visible-light photoredox catalysis on TiO2. Chem. Sci. 6, 5000–5005. https://doi.org/10.1039/c5sc01813g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Zhi, K. Li, H. Xia, et al. (2017). Robust porous organic polymers as efficient heterogeneous organo-photocatalysts for aerobic oxidation reactions. J. Mater. Chem. A 5, 8697–8704. https://doi.org/10.1039/c7ta02205k.

    Article  CAS  Google Scholar 

  18. K. Teegardin, J. I. Day, J. Chan, and J. Weaver (2016). Advances in photocatalysis: a microreview of visible light mediated ruthenium and iridium catalyzed organic transformations. Org. Process Res. Dev. 20, 1156–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. Taheri-Ledari, W. Zhang, M. Radmanesh, et al. (2020). Multi-stimuli nanocomposite therapeutic: docetaxel targeted delivery and synergies in treatment of human breast cancer tumor. Small. https://doi.org/10.1002/smll.202002733.

    Article  PubMed  Google Scholar 

  20. S. G. E. Amos, M. Garreau, L. Buzzetti, and J. Waser (2020). Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis. Beilstein J. Org. Chem. 16, 1163–1187. https://doi.org/10.3762/bjoc.16.103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. A. Romero and D. A. Nicewicz (2016). Organic photoredox catalysis. Chem. Rev. 116, 10075–10166.

    Article  CAS  PubMed  Google Scholar 

  22. D. A. Nicewicz and T. M. Nguyen (2014). Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal. 4, 355–360.

    Article  CAS  Google Scholar 

  23. D. Ravelli, M. Fagnoni, and A. Albini (2013). Photoorganocatalysis. What for? Chem. Soc. Rev. 42, 97–113. https://doi.org/10.1039/c2cs35250h.

    Article  CAS  PubMed  Google Scholar 

  24. I. K. Sideri, E. Voutyritsa, and C. G. Kokotos (2018). Photoorganocatalysis, small organic molecules and light in the service of organic synthesis: the awakening of a sleeping giant. Org. Biomol. Chem. 16, 4596–4614.

    Article  CAS  PubMed  Google Scholar 

  25. A. Srivastava, P. K. Singh, A. Ali, et al. (2020). Recent applications of Rose Bengal catalysis in N-heterocycles: a short review. RSC Adv. 10, 39495–39508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. I. Patel, A. Sharma, S. Sharma, and A. Sharma (2021). Visible light-mediated applications of methylene blue in organic synthesis. Org. Chem. Front. 8, 1694–1718.

    Article  CAS  Google Scholar 

  27. V. Srivastava and P. P. Singh (2017). Eosin y catalysed photoredox synthesis: a review. RSC Adv. 7, 31377–31392.

    Article  CAS  Google Scholar 

  28. A. Maleki (2018). Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason. Sonochem. 40, 460–464. https://doi.org/10.1016/j.ultsonch.2017.07.020.

    Article  CAS  PubMed  Google Scholar 

  29. A. Maleki, Z. Hajizadeh, and R. Firouzi-Haji (2018). Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater. 259, 46–53. https://doi.org/10.1016/j.micromeso.2017.09.034.

    Article  CAS  Google Scholar 

  30. A. Dandia, P. Saini, R. Sharma, and V. Parewa (2020). Visible light driven perovskite-based photocatalysts: a new candidate for green organic synthesis by photochemical protocol. Curr Res Green Sustain Chem. https://doi.org/10.1016/j.crgsc.2020.100031.

    Article  Google Scholar 

  31. P. Riente and T. Noël (2019). Application of metal oxide semiconductors in light-driven organic transformations. Catal. Sci. Technol. 9, 5186–5232.

    Article  CAS  Google Scholar 

  32. A. Sridhar, R. Rangasamy, and M. Selvaraj (2019). Polymer-supported eosin Y as a reusable photocatalyst for visible light mediated organic transformations. New J. Chem. 43, 17974–17979. https://doi.org/10.1039/c9nj04064a.

    Article  CAS  Google Scholar 

  33. L. Kannappan and R. Rajmohan (2020). Synthesis of structurally enhanced magnetite cored poly(propyleneimine) dendrimer nanohybrid material and evaluation of its functionality in sustainable catalysis of condensation reactions. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2020.104579.

    Article  Google Scholar 

  34. Y. Huang, Z. Xin, W. Yao, et al. (2018). A recyclable self-assembled composite catalyst consisting of Fe3O4-rose bengal-layered double hydroxides for highly efficient visible light photocatalysis in water. Chem. Commun. 54, 13587–13590. https://doi.org/10.1039/c8cc08130a.

    Article  CAS  Google Scholar 

  35. S. Sharma and A. Sharma (2019). Recent advances in photocatalytic manipulations of Rose Bengal in organic synthesis. Org. Biomol. Chem. 17, 4384–4405.

    Article  CAS  PubMed  Google Scholar 

  36. M. Abbas, S. R. Torati, and C. G. Kim (2015). A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline. Nanoscale 7, 12192–12204. https://doi.org/10.1039/c5nr02680f.

    Article  CAS  PubMed  Google Scholar 

  37. K. C. F. Leung, S. Xuan, and C. M. Lo (2009). Reversible switching between hydrophilic and hydrophobic superparamagnetic iron oxide microspheres via one-step supramolecular dynamic dendronization: exploration of dynamic wettability. ACS Appl. Mater. Interfaces 1, 2005–2012. https://doi.org/10.1021/am900367a.

    Article  CAS  PubMed  Google Scholar 

  38. B. Martins Estevão, F. Cucinotta, N. Hioka, et al. (2015). Rose Bengal incorporated in mesostructured silica nanoparticles: structural characterization, theoretical modeling and singlet oxygen delivery. Phys. Chem. Chem. Phys. 17, 26804–26812. https://doi.org/10.1039/c5cp03564c.

    Article  PubMed  Google Scholar 

  39. K. C. Souza, J. D. Ardisson, and E. M. B. Sousa (2009). Study of mesoporous silica/magnetite systems in drug controlled release. J. Mater. Sci. 20, 507–512. https://doi.org/10.1007/s10856-008-3592-1.

    Article  CAS  Google Scholar 

  40. S. Hozhabr Araghi and M. H. Entezari (2015). Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution. Appl. Surf. Sci. 333, 68–77. https://doi.org/10.1016/j.apsusc.2015.01.211.

    Article  CAS  Google Scholar 

  41. S. Kumar, V. K. Meena, P. P. Hazari, et al. (2018). Rose Bengal attached and dextran coated gadolinium oxide nanoparticles for potential diagnostic imaging applications. Eur. J. Pharm. Sci. 117, 362–370. https://doi.org/10.1016/j.ejps.2018.03.008.

    Article  CAS  PubMed  Google Scholar 

  42. X. Zhang, S. Xiang, Q. Du, et al. (2022). Effect of calcination temperature on the structure and performance of rod-like MnCeOx derived from MOFs catalysts. Mol Catal. https://doi.org/10.1016/j.mcat.2022.112226.

    Article  Google Scholar 

  43. X. Gu, X. Li, Y. Chai, et al. (2013). Simple metal-free catalytic sulfoxidation under visible light and air. Green Chem. 15, 357–361. https://doi.org/10.1039/c0xx00000x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank for utilizing the equipment and instruments rendered by Science and Engineering Research Board, DST, India (EEQ/2017/000374). We acknowledge HRTEM and XRD facility at SRMIST set up with support from MNRE (Project No. 31/03/2014-15/PVSE-R&D), GoI. Analytical facilities rendered from IIT Guwahati, VIT Vellore, ACIC Trichy are gratefully acknowledged

Funding

There was no funding for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajmohan Rangasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 779 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathibha, E., Rangasamy, R., Sridhar, A. et al. Rose Bengal Anchored Silica-Magnetite Nanocomposite as Photosensitizer for Visible- Light-Mediated Oxidation of Thioethers. J Clust Sci 34, 1605–1614 (2023). https://doi.org/10.1007/s10876-022-02338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02338-y

Keywords

Navigation