Skip to main content
Log in

Biological Inspired Green Synthesis of TiO2 Coupled g-C3N4 Nanocomposites and Its Improved Activities for Sulfadiazine and Bisphenol A Degradation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this research study an eco-friendly approach is utilized to synthesize the green g-C3N4 based nanocomposites by employing Zingiber officinale as stabilizer and mediator. Our results proved that the green g-C3N4 have good performances and exceptional visible light photocatalytic activities as compared to the chemically synthesized g-C3N4. The small surface area, and low charge separation of g-C3N4 is upgraded by coupling with TiO2 nanoparticles. Our experimental results have confirmed that Zingiber officinale worked as stabilizer and mediator, while the coupling of TiO2 worked as facilitator and photoelectron modulator to enhance the charge separation. Compared to pristine green g-C3N4 (GCN), the most active sample 5Ti/GCN showed ~ 2.5-fold improvement in photocatalytic activities for sulfadiazine and bisphenol A degradation. The degradation pathways of sulfadiazine and bisphenol A showed the mineralization steps and production of less hazardous and small molecules (CO2 and H2O). Finally, our current novel research work will provide a new gateway to synthesize the plant assisted and eco-friendly green nanomaterials and its employment for pollutants degradation and environmental purification.

Graphical Abstract

Graphical abstract representing the Zingiber officinale mediated synthesis of TiO2 coupled g-C3N4 green nanocomposites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. N. Garba, W. Zhou, M. Zhang, and Z. Yuan (2020). Chemosphere 244, 125474.

    Article  CAS  PubMed  Google Scholar 

  2. L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, and H. Wang (2018). Appl. Catal. B: Environ. 221, 715.

    Article  CAS  Google Scholar 

  3. J. Ahmad and K. Majid (2018). New J. Chem. 42, 3246–3259.

    Article  CAS  Google Scholar 

  4. G. Kyrila, A. Katsoulas, V. Schoretsaniti, A. Rigopoulos, E. Rizou, S. Doulgeridou, V. Sarli, V. Samanidou, and M. Touraki (2021). J. Hazard. Mater. 413, 125363.

    Article  CAS  PubMed  Google Scholar 

  5. J. Chen, X. Jiang, T. Tong, S. Miao, J. Huang, and S. Xie (2019). Sci. Total Environ. 691, 1072.

    Article  CAS  PubMed  Google Scholar 

  6. S. Anandan, V. Kumar Ponnusamy, and M. Ashokkumar (2020). Ultrason. Sonochem. 67, 105130.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Vasseghian, A. Khataee, E.-N. Dragoi, M. Moradi, S. Nabavifard, G. Oliveri Conti, and A. Mousavi Khaneghah (2020). Arab. J. Chem. 13, 8458.

    Article  CAS  Google Scholar 

  8. Parul, K. Kaur, R. Badru, P. P. Singh, and S. Kaushal (2020). J. Environ. Chem. Eng. 8, 103666.

    Article  CAS  Google Scholar 

  9. I. Khan, M. Luo, L. Guo, S. Khan, C. Wang, A. Khan, M. Saeed, S. Zaman, K. Qi, and Q. L. Liu (2021). Catal. Sci. Technol. 11, 6793.

    Article  CAS  Google Scholar 

  10. M. Adeel, M. Saeed, I. Khan, M. Muneer, and N. Akram (2021). ACS Omega 6, 1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K. Qi, W. Lv, I. Khan, and S.-Y. Liu (2020). Chin. J. Catal. 41, 114.

    Article  CAS  Google Scholar 

  12. K. Zhao, I. Khan, K. Qi, Y. Liu, and A. Khataee (2020). Mater. Chem. Phys. 253, 123322.

    Article  CAS  Google Scholar 

  13. I. Khan, M. Luo, L. Guo, S. Khan, S. A. Shah, I. Khan, A. Khan, C. Wang, B. Ai, and S. Zaman (2022). Appl. Catal. A: Gen. 629, 118418.

    Article  CAS  Google Scholar 

  14. S. Khan, C. Wan, J. Chen, I. Khan, M. Luo, and C. Wang (2021). J. Chin. Chem. Soc. 68, 2093.

    Article  CAS  Google Scholar 

  15. T. Li, L. Zhao, Y. He, J. Cai, M. Luo, and J. J. Lin (2013). Appl. Catal. B: Environ. 129, 255.

    Article  CAS  Google Scholar 

  16. J. S. Boruah, C. Devi, U. Hazarika, P. V. Bhaskar Reddy, D. Chowdhury, M. Barthakur, and P. Kalita (2021). RSC Adv. 11, 28029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. K. P. Kumar, W. Paul, and C. P. Sharma (2011). Process Biochem. 46, 2007.

    Article  CAS  Google Scholar 

  18. I. Stoilova, A. Krastanov, A. Stoyanova, P. Denev, and S. Gargova (2007). Food Chem. 102, 764.

    Article  CAS  Google Scholar 

  19. A. Haider, M. Ijaz, S. Ali, J. Haider, M. Imran, H. Majeed, I. Shahzadi, M. M. Ali, J. A. Khan, and M. Ikram (2020). Nanoscale Res. Lett. 15, 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Wen, J. Xie, X. Chen, and X. Li (2017). Appl. Surf. Sci. 391, 72.

    Article  CAS  Google Scholar 

  21. W. Zhao, Z. Q. Yan, and L. Qian (2020). Eng. Sci. 10, 24.

    CAS  Google Scholar 

  22. S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng, and X. Wang (2019). Catal. Today 335, 65–77.

    Article  CAS  Google Scholar 

  23. M. A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, and M. B. Akbar (2020). J. Photochem. Photobiol. A: Chem. 401, 112776.

    Article  CAS  Google Scholar 

  24. G. Mamba and A. K. Mishra (2016). Appl. Catal. B: Environ. 198, 347.

    Article  CAS  Google Scholar 

  25. A. Yamakata and J. J. M. Vequizo (2019). J. Photochem. Photobiol. C: Photochem. Rev. 40, 234.

    Article  CAS  Google Scholar 

  26. R. Nandanwar, J. Bamne, N. Singh, P. K. Sharma, P. Singh, A. Umar, and F. Z. Haque (2022). ES Mater. Manuf. 16, 78.

    CAS  Google Scholar 

  27. M. M. Rashid, B. Simončič, and B. Tomšič (2021). Surf. Interfaces 22, 100890.

    Article  CAS  Google Scholar 

  28. W. H. Eisa, M. F. Zayed, B. Anis, L. M. Abbas, S. S. M. Ali, and A. M. Mostafa (2019). J. Clean. Prod. 241, 118398.

    Article  CAS  Google Scholar 

  29. M. C. Mesomo, A. D. P. Scheer, E. Perez, P. M. Ndiaye, and M. L. Corazza (2012). J. Supercrit. Fluids 71, 102.

    Article  CAS  Google Scholar 

  30. R. Zhong, Z. Zhang, S. Luo, Z. C. Zhang, L. Huang, and M. Gu (2019). Catal. Sci. Technol. 9, 75.

    Article  CAS  Google Scholar 

  31. I. Khan, N. Sun, Z. Zhang, Z. Li, M. Humayun, S. Ali, Y. Qu, and L. Jing (2019). Catal. Sci. Technol. 9, 3149.

    Article  CAS  Google Scholar 

  32. I. Khan, N. Sun, Y. Wang, Z. Li, Y. Qu, and L. Jing (2020). Mater. Res. Bull. 127, 110857.

    Article  CAS  Google Scholar 

  33. G. Dinda, D. Halder, A. Mitra, N. Pal, and D. K. Chattoraj (2020). J. Dispers. Sci. Technol. 41, 2128.

    Article  CAS  Google Scholar 

  34. Z. Shu, Y. Wang, W. Wang, J. Zhou, T. Li, X. Liu, Y. Tan, and Z. Zhao (2019). Int. J. Hydrog. Energy 44, 748.

    Article  CAS  Google Scholar 

  35. H. Wang, Z. Lei, L. Li, and X. Wang (2019). Solar Energy 191, 70.

    Article  CAS  Google Scholar 

  36. J. Judith Vijaya, N. Jayaprakash, K. Kombaiah, K. Kaviyarasu, L. John Kennedy, R. Jothi Ramalingam, H. A. Al-Lohedan, V. M. Mansoor-Ali, and M. Maaza (2017). J. Photochem. Photobiol. B: Biol. 177, 62.

    Article  CAS  Google Scholar 

  37. D. Feng, Y. Cheng, J. He, L. Zheng, D. Shao, W. Wang, W. Wang, F. Lu, H. Dong, H. Liu, R. Zheng, and H. Liu (2017). Carbon 125, 454.

    Article  CAS  Google Scholar 

  38. J. F. Sun, Q. Mu, H. Kimura, V. Murugadoss, M. He, W. Du, and C. Hou (2022). Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00435-0.

    Article  PubMed  PubMed Central  Google Scholar 

  39. M. Saeed, M. Usman, M. Ibrahim, A. U. Haq, I. Khan, H. Ijaz, and F. Akram (2020). Int. J. Chem. Reactor Eng. 18, 0004.

    Article  Google Scholar 

  40. X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang, and Y. Liu (2016). Nanoscale 8, 11034.

    Article  CAS  PubMed  Google Scholar 

  41. H. Wei, W. A. McMaster, J. Z. Y. Tan, D. Chen, and R. A. Caruso (2018). J. Mater. Chem. A 6, 7236.

    Article  CAS  Google Scholar 

  42. H. Wei, W. A. McMaster, J. Z. Y. Tan, L. Cao, D. Chen, and R. A. Caruso (2017). The J. Phys. Chem. C 121, 22114.

    Article  CAS  Google Scholar 

  43. F. Yang, X. Chu, J. Sun, Y. Zhang, Z. J. Li, H. Y. Liu, L. Bai, Y. Qu, and L. Jing (2020). Chinese Chemical Letters 31, 2784.

    Article  CAS  Google Scholar 

  44. N. Zarshad, I. Khan, A. U. Rahman, A. Ali, S. Zaman, S. Khan, H. Yasmeen, N. Qadar, K. Qi, and H. Ni (2021). J. Chin. Chem. Soc. 68, 569.

    Article  CAS  Google Scholar 

  45. S. Ali Shah, L. Xu, R. Sayyar, T. Bian, Z. Liu, A. Yuan, X. Shen, I. Khan, A. Ali Tahir, and H. Ullah (2022). Chem. Eng. J. 428, 132126.

    Article  CAS  Google Scholar 

  46. S. Zhang, I. Khan, X. Qin, K. Qi, Y. Liu, and S. Bai (2020). Front. Chem. 8, 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D. Yang, X. Zhao, Y. Chen, W. Wang, Z. Zhou, Z. Zhao, and Z. Jiang (2019). Ind. Eng. Chem. Res. 58, 5516.

    Article  CAS  Google Scholar 

  48. L. Zhao, Z. L. Zhao, Y. X. Li, X. Y. Chu, Z. J. Li, Y. Qu, L. L. Bai, and L. Q. Jing (2020). Nanoscale 12, 10010.

    Article  CAS  PubMed  Google Scholar 

  49. K. Qin, Y. Chen, J. Li, C. Xue, L. Wei, X. Song, J. Ding, and Q. Zhao (2020). Environ. Sci.: Water Res. Technol. 6, 2331.

    CAS  Google Scholar 

  50. Z. Huang, Q. Sun, K. Lv, Z. Zhang, M. Li, and B. Li (2015). Appl. Catal. B: Environ. 164, 420.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iltaf Khan or Aihua Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Khan, S., Chen, J. et al. Biological Inspired Green Synthesis of TiO2 Coupled g-C3N4 Nanocomposites and Its Improved Activities for Sulfadiazine and Bisphenol A Degradation. J Clust Sci 34, 1453–1464 (2023). https://doi.org/10.1007/s10876-022-02317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02317-3

Keywords

Navigation