Skip to main content
Log in

Synthesis, Crystal Structure, Hirshfeld Surface Analysis, Molecular Docking, IR Spectroscopy and DFT Calculations of a Novel 2D Layered Hybrid Compound (C6H10N3O)2Cu2Cl6

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The 2D hybrid compound bis(2-amino-4-methoxy-6-methylpyrimidinium) bis(μ2-chloro)-tetrachloro-di-copper(II), (C6H10N3O)2Cu2Cl6, is successfully synthesized by slow solvent evaporation at room temperature. Structural properties have been investigated through single-crystal X-ray diffraction and reveal that the structure contains a centrosymmetric hexachlorodicuprate group where each Cu atom is coordinated to four Cl atoms in a slightly distorted square planar geometry. There are short contacts between neighboring [Cu2Cl6]2− dimer units. The crystalline building stability is ensured by N–H⋯Cl and C–H⋯O hydrogen bonding as well as weak C–H···π intermolecular interactions. From the infrared spectroscopy analysis, the functional groups were identified. Simultaneously, the electrical properties and Hirshfeld surface analyses were also elucidated. Furthermore, the molecular docking study of 2D hybrid compound bis(2-amino-4-methoxy-6-methylpyrimidinium) bis(2-chloro)-tetrachloro-di-copper(II) ligand with an HSP90/PDB: 5LRZ was performed by Autodock Vina. Additionally, drug-likeness and ADME properties and evaluations of the newly synthesized molecule were performed in detail. FT-IR was used to explore the modes of vibration of the different functional groups present in the studied compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data are available within the manuscript and associated supporting information file.

References

  1. F. Girardi, E. Cappelletto, J. Sandak, G. Bochicchio, B. Tessadri, S. Palanti, E. Feci, and R. D. Maggio (2014). Prog. Org. Coat. 77, 449–457.

    Article  CAS  Google Scholar 

  2. M. Szafranski (2016). Cryst. Growth Des. 16, 3771–3776.

    Article  CAS  Google Scholar 

  3. H. B. Duan, X. M. Ren, and Q. J. Meng (2010). Coord. Chem. Rev. 254, 1509–1522.

    Article  CAS  Google Scholar 

  4. C. Bellitto, E. M. Bauer, and G. Righini (2015). Coord. Chem. Rev. 289–290, 123–136.

    Article  Google Scholar 

  5. J. M. Lei, Q. X. Peng, S. P. Luo, Y. Liu, S. Z. Zhan, and C. L. Ni (2018). Mol. Catal. 448, 10–17.

    Article  CAS  Google Scholar 

  6. K. Pradeesh, M. Agarwal, K. K. Rao, and G. Vijaya Prakash (2010). Solid State Sci. 12, 95–98.

    Article  CAS  Google Scholar 

  7. Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, and Y. Yang (2015). Nano Today 10, 355–396.

    Article  CAS  Google Scholar 

  8. Z. Czapla, Yu. Eliyashevskyy, and S. Dacko (2006). Ferroelectr. Lett. Sect. 33, 1–6.

    Article  CAS  Google Scholar 

  9. A. O. Polyakov, A. H. Arkenbout, J. Baas, G. R. Blake, A. Meetsma, A. Caretta, and T. T. M. Palstra (2011). Chem. Mater. 24, 133–139.

    Article  Google Scholar 

  10. C. Jiang, Q. Luo, H. Fu, H. Lin, C. Luo, J. Wang, X. Meng, H. Peng, C.-G. Duanb, and J. Chu (2020). CrystEngComm 22, 587–592.

    Article  CAS  Google Scholar 

  11. C. Peng (2011). Acta Cryst. E67.

    Google Scholar 

  12. S. Bouacida, R. Bouchene, A. Khadri, R. Belhouas, and H. Merazig (2013). Acta Crystallogr. Sect. E 69, 610.

    Article  Google Scholar 

  13. A. Kessentini, M. Belhouchet, J. J. Suñol, Y. Abid, and T. Mhiri (2015). Spectrochim. Acta A 134, 28–33.

    Article  CAS  Google Scholar 

  14. P. Arularasan, B. Sivakumar, G. Chakkaravarthi, and R. Mohana (2013). Acta Cryst. E 69, 583.

    Article  Google Scholar 

  15. T. Dammak, H. Boughzala, A. Mlayah, and Y. Abid (2016). J. Lumin. 173, 213–217.

    Article  CAS  Google Scholar 

  16. N. Karaa, B. Hamdi, A. Oueslati, A. Ben Salah, and R. Zouari (2010). J. Inorg. Organomet. Polym. Mater. 20, 746–754.

    Article  CAS  Google Scholar 

  17. A. K. Vishwakarma, R. Kumari, P. S. Ghalsasi, and N. Arulsamy (2017). J. Mol. Struct. 1141, 93–98.

    Article  CAS  Google Scholar 

  18. S. Walha, H. Naïli, S. Yahyaoui, B. Fares Ali, M. M. Turnbull, T. Mhiri, and S. W. Ng (2013). J. Supercond. Nov. Magn. 26, 437–442.

    Article  CAS  Google Scholar 

  19. A. K. Vishwakarma, P. S. Ghalsasi, A. Navamoney, Y. Lan, and A. K. Powell (2011). Polyhedron 30, 1565–1570.

    Article  CAS  Google Scholar 

  20. W. E. Hunt, C. H. Schwalbe, K. Bird, and P. D. Mallinson (1980). Biochem. J. 187, 533–536. https://doi.org/10.1042/bj1870533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Jeevaraj, P. Sivajeyanthi, B. Edison, K. Thanigaimani, and K. Balasubramani (2018). Acta Crystallogr. Sect. E Crystallogr. Commun. 74, 656–659.

    Article  CAS  Google Scholar 

  22. N. V. Rao, B. Vaizalini, B. Mounika, L. V. Harika, P. K. Desu, and S. Nama (2013). J. Pharm. Chem. Res. 2, 14–22.

    Google Scholar 

  23. Z. Afroz, M. Faizan, M. J. Alam, V. H. N. Rodrigues, S. Ahmad, and A. Ahmad (2018). J. Mol. Struct. 1171, 438–448.

    Article  CAS  Google Scholar 

  24. E. A. Alodeani, M. A. Izhari, and M. Arshad (2014). Eur. J. Biomed. Pharm. Sci. 1, 504–527.

    CAS  Google Scholar 

  25. S. Q. Wang, L. Fang, X. J. Liu, and K. Zhao (2004). Chin. Chem. Lett. 15, 885–888.

    CAS  Google Scholar 

  26. V. Yerragunta, P. Patil, V. Anusha, T. Kumaraswamy, D. Suman, and T. Samhitha (2013). PharmaTutor 1, 39–44.

    Google Scholar 

  27. M. Kurono, M. Hayashi, K. Miura, Y. Isogawa, and K. Sawai (1988). Chem. Abstr. 109, 37832.

    Google Scholar 

  28. S. N. Pandeya, D. Sriram, G. Nath, and E. D. Clercq (1999). Farmaco 54, 624–628.

    Article  CAS  PubMed  Google Scholar 

  29. P. Sharma, N. Rane, and V. K. Gurram (2004). Bioorg. Med. Chem. Lett. 14, 4185–4190.

    Article  CAS  PubMed  Google Scholar 

  30. E. Wagner, K. A. Kadasi, M. Zimecki, and W. S. Dobrowolska (2008). Eur. J. Med. Chem. 43, 2498–2504.

    Article  CAS  PubMed  Google Scholar 

  31. T. P. Selvam, C. R. James, P. V. Dniandev, and S. K. Valzita (2012). Res. Pharm. 2, 01–09.

    Google Scholar 

  32. M. Asif (2014). SOP Trans. Org. Chem. 1, 1–10.

    Article  Google Scholar 

  33. S. Lahmidi, E. H. Anouar, M. El Hafi, M. Boulhaoua, A. Ejjoumamany, M. El Jemli, E. M. Essassi, and J. T. Mague (2019). J. Mol. Struct. 1177, 131–142.

    Article  CAS  Google Scholar 

  34. Stoe and Cie, X-RED and X-AREA (Stoe and Cie, Darmstadt, 2009).

    Google Scholar 

  35. G. M. Sheldrick (2008). Acta Crystallogr. Sect. A 64, 112–122.

    Article  CAS  Google Scholar 

  36. G. M. Sheldrick (2015). Acta Cryst. C 71, 3–8.

    Article  Google Scholar 

  37. J. J. McKinnon, M. A. Spackman, and A. S. Mitchell (2004). Acta Cryst. B 60, 627–668.

    Article  Google Scholar 

  38. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman (2007). Chem. Commun. 37, 3814–3816.

    Article  Google Scholar 

  39. M. A. Spackman and J. J. McKinnon (2002). CrystEngComm 4, 378–392.

    Article  CAS  Google Scholar 

  40. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17 (University of Western Australia, 2017).

  41. R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 (Semichem Inc., Shawnee Mission, 2009).

    Google Scholar 

  42. M. J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09, Revision D. 01 (Gaussian Inc., Wallingford, 2009).

    Google Scholar 

  43. O. Trott and A. J. Olson (2010). J. Comput. Chem. 31, 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. A. Daina, O. Michielin, and V. Zoete (2017). Sci. Rep. 7, 42717.

    Article  PubMed  PubMed Central  Google Scholar 

  45. B. Bremer and A. A. Pinkerton (1990). Inorg. Chim. Acta 174, 21–32.

    Article  Google Scholar 

  46. G. Hu and E. M. Holt (1994). Acta Cryst. C 50, 1212–1214.

    Article  Google Scholar 

  47. V. V. Sharutin, V. S. Senchurin, O. K. Sharutina, A. P. Pakusina, and O. A. Fastovets (2010). Russ. J. Inorg. Chem. 55, 1415–1420.

    Article  CAS  Google Scholar 

  48. J. Dai and J. Xu (2011). Acta Cryst. E67.

    Google Scholar 

  49. L. Yang, D. R. Powell, and R. P. Houser (2007). Dalton Trans. 9, 955–964.

    Article  Google Scholar 

  50. R. D. Willett (1966). J. Chem. Phys. 44, 39.

    Article  Google Scholar 

  51. R. L. Harlow, W. J. Wells, G. W. Watt, and S. H. Simonsen (1974). Inorg. Chem. 13, 2860–2863.

    Article  CAS  Google Scholar 

  52. K. Kaabi, M. El Glaoui, V. Ferretti, M. Zeller, and C. Ben Nasr (2011). Acta Cryst. E 67, o2507–o2508.

    Article  CAS  Google Scholar 

  53. S. Suganya, A. Karthikeyan, V. Srimathi, and P. Kumaradhas (2020). Chem. Data Collect. 29.

    Article  CAS  Google Scholar 

  54. E. Jaziri, L. Khedhiri, S. Soudani, V. Ferretti, F. Lefebvre, W. Fujita, and C. Ben Nasr (2021). J. Clust. Sci. 32, 145–153.

    Article  CAS  Google Scholar 

  55. M. Jeevaraj, P. Sivajeyanthi, B. Edison, K. Thanigaimani, and K. Balasubramani (2018). Acta Cryst. E 74, 656–659.

    Article  CAS  Google Scholar 

  56. Fleming, Frontier Orbitals and Organic Chemical Reactions. (Wiley, New York, 1976), pp. 5–27.

    Google Scholar 

  57. M. D. Diener and J. M. Alford (1998). Nature 393, 668–671.

    Article  CAS  Google Scholar 

  58. E. Scrocco and J. Tomasi (1978). Adv. Quantum Chem. 11, 115–193.

    Article  CAS  Google Scholar 

  59. F. J. Luque, J. M. Lopez, and M. Orozco (2000). Theor. Chem. Acc. 103, 343–345.

    Article  CAS  Google Scholar 

  60. B. J. McConkey, V. Sobolev, and M. Edelman (2002). Curr. Sci. 83, 845–856.

    CAS  Google Scholar 

  61. R. R. Nadendla (2004). Resonance 9, 51–60.

    Article  CAS  Google Scholar 

  62. X.-Y. Meng, H.-X. Zhang, M. Mezei, and M. Cui (2011). Curr. Comput. Aided Drug Des. 7, 146–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. J. Polanski (2009). Curr. Med. Chem. 16, 3243–3257.

    Article  CAS  PubMed  Google Scholar 

  64. A. Mettu, V. Talla, D. M. Bajaj, and N. J. P. Subhashini (2019). Arch. Pharm. 352, 1900063.

    Article  CAS  Google Scholar 

  65. https://www.3dsbiovia.com/

  66. https://www.rcsb.org/

  67. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney (1997). Adv. Drug Deliv. Rev. 23, 3–25.

    Article  CAS  Google Scholar 

  68. A. Daina, O. Michielin, and V. Zoete (2017). Sci. Rep. 7, 1–13.

    Article  Google Scholar 

  69. A. Daina and V. Zoete (2016). Chem. Med. Chem. 11, 1117–1121.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors especially thanks to Prof. Dr. Fatih UCUN from the Suleyman Demirel University for his helpful contribution for Gaussian calculations.

Funding

Not funded.

Author information

Authors and Affiliations

Authors

Contributions

CBN and LK: Conceptualization, design, resources, editing and supervision. CG: Synthesis, Analysis, writing and manuscript draft. UB: X-ray data collections and structure resolution. YS, EBÇ and ND: DFT calculations, writing and proofreading.

Corresponding author

Correspondence to Lamia Khedhiri.

Ethics declarations

Conflict of interest

Authors declare zero conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharbi, C., Sert, Y., Çınar, E.B. et al. Synthesis, Crystal Structure, Hirshfeld Surface Analysis, Molecular Docking, IR Spectroscopy and DFT Calculations of a Novel 2D Layered Hybrid Compound (C6H10N3O)2Cu2Cl6. J Clust Sci 34, 1423–1435 (2023). https://doi.org/10.1007/s10876-022-02314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02314-6

Keywords

Navigation