Skip to main content

Advertisement

Log in

Bioactive Selenium Nanoparticles Synthesized from Propolis Extract and Quercetin Based on Natural Deep Eutectic Solvents (NDES)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study presents the process of obtaining of antimicrobial selenium nanoparticles in propolis extract and quercetin using natural deep eutectic solvents (NDES). The extraction using NDES as solvent makes it possible to obtain extracts with a higher content of active compounds compared to extraction with water, especially as it concerns compounds with limited solubility in water. Based on the results, the highest content of flavonoids, terpenes and antioxidant activity were found in the propolis extract with the applied NDES citric acid-propanediol-proline. The total phenolic content of propolis extracts ranged from about 30 to 200 mg/g dry weight, and the flavonoid content ranged from about 3 to 70 mg quercetin equivalents. Spherical selenium nanoparticles obtained from propolis extract had a particle size of 279 nm, while Se NPs obtained from quercetin dissolved in NDES had a particle size of about 96.0 nm. Se NPs obtained in the presence of both quercetin and propolis extract had high antioxidant activity. The activity of selenium nanoparticles synthesized using propolis was confirmed against E. coli, P. aeruginosa, S. aureus and C. albicans. The MBC of the microorganisms were 25, 100, 100 and 25 mg/l, respectively for E. coli, P. aeruginosa, S. aureus and C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Agarwal, A. Nakara, and V. K. Shanmugam (2019). Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2018.11.116.

    Article  PubMed  Google Scholar 

  2. E. B. Randi, G. Casili, S. Jacquemai, and C. Szabo (2021). Selenium-binding protein 1 (SELENBP1) supports hydrogen sulfide biosynthesis and adipogenesis. Antioxidants 10, 361. https://doi.org/10.3390/ANTIOX10030361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. V. Bankova, M. Popova, and B. Trusheva (2018). The phytochemistry of the honeybee. Phytochemistry 155, 1–11. https://doi.org/10.1016/J.PHYTOCHEM.2018.07.007.

    Article  CAS  PubMed  Google Scholar 

  4. S. Huang, C. P. Zhang, K. Wang, G. Q. Li, and F. L. Hu (2014). Recent advances in the chemical composition of propolis. Molecules 19, 19610. https://doi.org/10.3390/MOLECULES191219610.

    Article  PubMed  PubMed Central  Google Scholar 

  5. V. Bankova, M. Popova, and B. Trusheva (2016). New emerging fields of application of propolis. Maced. J. Chem. Chem. Eng. 35, 1–11. https://doi.org/10.20450/mjcce.2016.864.

    Article  Google Scholar 

  6. K. Pobiega, K. Kraśniewska, and M. Gniewosz (2019). Application of propolis in antimicrobial and antioxidative protection of food quality—a review. Trends Food Sci. Technol. 83, 53–62. https://doi.org/10.1016/J.TIFS.2018.11.007.

    Article  CAS  Google Scholar 

  7. S. El-Guendouz, B. Lyoussi, and M. G. Miguel (2019). Insight on propolis from mediterranean countries: chemical composition, biological activities and application fields. Chem Biodivers. https://doi.org/10.1002/cbdv.201900094.

    Article  PubMed  Google Scholar 

  8. J. Kocot, M. Kiełczykowska, D. Luchowska-Kocot, J. Kurzepa, and I. Musik (2018). Antioxidant potential of propolis, bee pollen, and royal jelly: possible medical application. Oxid. Med. Cell. Longev. 20, 18. https://doi.org/10.1155/2018/7074209.

    Article  CAS  Google Scholar 

  9. Y. Zhou, Q. Jiang, S. Mak, and X. Zhou (2021). Effect of quercetin on the in vitro Tartary buckwheat starch digestibility. Int. J. Biol. Macromol. 183, 818–830. https://doi.org/10.1016/J.IJBIOMAC.2021.05.013.

    Article  CAS  PubMed  Google Scholar 

  10. D. Yang, T. Wang, M. Long, and P. Li (2020). Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. https://doi.org/10.1155/2020/8825387.

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. F. Manzoor, A. Hussain, A. Sameen, A. Sahar, S. Khan, R. Siddique, et al. (2021). Novel extraction, rapid assessment and bioavailability improvement of quercetin: a review. Ultrason Sonochem. https://doi.org/10.1016/J.ULTSONCH.2021.105686.

    Article  PubMed  PubMed Central  Google Scholar 

  12. International Journal A, R. Rezaei-Sadabady, A. Eidi, N. Zarghami, A. Barzegar, R. rezaei-Sadabady, et al. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. https://doi.org/10.3109/21691401.2014.926456.

  13. A. Lateef, S. A. Ojo, and J. A. Elegbede (2016). The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol. Rev. 5, 601–622. https://doi.org/10.1515/NTREV-2016-0049/XML.

    Article  CAS  Google Scholar 

  14. R. Vishwanath and B. Negi (2021). Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr Res Green Sustain Chem. https://doi.org/10.1016/J.CRGSC.2021.100205.

    Article  Google Scholar 

  15. S. P. Vinay, Udayabhanu, G. Nagaraju, C. P. Chandrappa, N. Chandrasekhar (2020). Hydrothermal synthesis of gold nanoparticles using spider cobweb as novel biomaterial: application to photocatalytic. Chem. Phys. Lett. 748, 137402. https://doi.org/10.1016/J.CPLETT.2020.137402.

    Article  CAS  Google Scholar 

  16. A. Lateef, M. A. Akande, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, and L. S. Beukes (2016). Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. 3 Biotech 6, 1–10. https://doi.org/10.1007/S13205-016-0459-X/FIGURES/8.

    Article  Google Scholar 

  17. A. Lateef, S. A. Ojo, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, et al. (2016). Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl. Nanosci. (Switzerland) 6, 863–874. https://doi.org/10.1007/S13204-015-0492-9/FIGURES/10.

    Article  CAS  Google Scholar 

  18. S. Bisht, G. Feldmann, S. Soni, R. Ravi, C. Karikar, A. Maitra, et al. (2007). Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol. https://doi.org/10.1186/1477-3155-5-3.

    Article  Google Scholar 

  19. C. Jansen-Alves, F. D. Krumreich, G. P. Zandoná, M. A. Gularte, C. D. Borges, and R. C. Zambiazi (2019). Production of propolis extract microparticles with concentrated pea protein for application in food. Food Bioprocess Technol. 12, 729–740. https://doi.org/10.1007/s11947-019-2246-2.

    Article  CAS  Google Scholar 

  20. A. Di Crescenzo, M. Tiecco, R. Zappacosta, S. Boncompagni, P. Di Profio, V. Ettorre, et al. (2018). Novel zwitterionic natural deep eutectic solvents as environmentally friendly media for spontaneous self-assembly of gold nanoparticles. J. Mol. Liq. 268, 371–375. https://doi.org/10.1016/J.MOLLIQ.2018.07.060.

    Article  Google Scholar 

  21. S. M. Wabaidur, M. S. Obbed, Z. A. Alothman, N. A. Alfaris, A. Y. Badjah-Hadj-ahmed, M. R. Siddiqui, et al. (2020). Total phenolic acids and flavonoid contents determination in Yemeni honey of various floral sources: Folin-Ciocalteu and spectrophotometric approach. Food Sci. Technol. 40, 647–652. https://doi.org/10.1590/fst.33119.

    Article  Google Scholar 

  22. D. Bajčan, Ľ. Harangozo, D. Hrabovská, D. Bončíková (2013). Optimizing conditions for spectrophotometric determination of total polyphenols in wines using Folin-Ciocalteu reagent. 1

  23. E. Y. Backheet (1998). Micro determination of eugenol, thymol and vanillin in volatile oils and plants. Phytochem. Anal. 9, 134–140. https://doi.org/10.1002/(SICI)1099-1565(199805/06)9:3%3c134::AID-PCA398%3e3.0.CO;2-9.

    Article  CAS  Google Scholar 

  24. P. Matić, M. Sabljić, and L. Jakobek (2017). Validation of spectrophotometric methods for the determination of total polyphenol and total flavonoid content. J. AOAC Int. 100, 1795–1803. https://doi.org/10.5740/jaoacint.17-0066.

    Article  CAS  PubMed  Google Scholar 

  25. L. A. L. Da Silva, B. R. Pezzini, and L. Soares (2015). Spectrophotometric determination of the total flavonoid content in Ocimum basilicum L. (Lamiaceae) leaves. Phcog. Mag. 11, 96–101. https://doi.org/10.4103/0973-1296.149721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. K. Sirivibulkovit, S. Nouanthavong, and Y. Sameenoi (2018). Paper-based DPPH assay for antioxidant activity analysis. Anal. Sci. 34, 795–800. https://doi.org/10.2116/analsci.18P014.

    Article  CAS  PubMed  Google Scholar 

  27. L. Gunti, R. S. Dass, and N. K. Kalagatur (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol. https://doi.org/10.3389/FMICB.2019.00931.

    Article  PubMed  PubMed Central  Google Scholar 

  28. S. Boroumand, M. Safari, E. Shaabani, M. Shirzad, and R. Faridi-Majidi (2019). Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater Res Express. https://doi.org/10.1088/2053-1591/AB2558.

    Article  Google Scholar 

  29. S. I. Vicas, L. Fritea, V. Laslo, S. Cavalu, and T. Costea (2017). green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Vasile Goldiş 27, 203–208.

    Google Scholar 

  30. S. S. Salem, M. M. G. Fouda, A. Fouda, M. A. Awad, E. M. Al-Olayan, A. A. Allam, et al. (2020). Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J. Clust. Sci. 32, 351–61. https://doi.org/10.1007/S10876-020-01794-8.

    Article  Google Scholar 

  31. S. Tang, T. Wang, M. Jiang, C. Huang, C. Lai, Y. Fan, et al. (2019). Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity. Int. J. Biol. Macromol. 128, 444–451. https://doi.org/10.1016/J.IJBIOMAC.2019.01.152.

    Article  CAS  PubMed  Google Scholar 

  32. M. Vahdati and T. T. Moghadam (2020). Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-019-57333-7.

    Article  CAS  Google Scholar 

  33. T. Huang, J. A. Holden, D. E. Heath, N. M. O’Brien-Simpson, and A. J. O’Connor (2019). Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. https://doi.org/10.1039/C9NR04424H.

    Article  PubMed  Google Scholar 

  34. B. El-Deeb, A. Al-Talhi, N. Mostafa, and R. Abou-assy (2018). Biological synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial properties. Am. Sci. Res. J. Eng. Technol. Sci. 45, 135–170.

    Google Scholar 

  35. A. H. Hashem, A. M. A. Khalil, A. M. Reyad, and S. S. Salem (2021). Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biol. Trace Elem. Res. 2021, 1–11. https://doi.org/10.1007/S12011-020-02506-Z.

    Article  Google Scholar 

  36. T. Huang, J. A. Holden, E. C. Reynolds, D. E. Heath, N. M. O’Brien-Simpson, and A. J. O’Connor (2020). Multifunctional antimicrobial polypeptide-selenium nanoparticles combat drug-resistant bacteria. ACS Appl. Mater.Interfaces 12, 55696–55709. https://doi.org/10.1021/ACSAMI.0C17550.

    Article  CAS  PubMed  Google Scholar 

  37. L. D. Geoffrion, T. Hesabizadeh, D. Medina-Cruz, M. Kusper, P. Taylor, A. Vernet-Crua, et al. (2020). Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega. https://doi.org/10.1021/ACSOMEGA.9B03172.

    Article  PubMed  PubMed Central  Google Scholar 

  38. N. Filipović, D. Ušjak, M. T. Milenković, K. Zheng, L. Liverani, A. R. Boccaccini, et al. (2021). Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol. https://doi.org/10.3389/FBIOE.2020.624621.

    Article  PubMed  PubMed Central  Google Scholar 

  39. R. Hassanien, A. A. I. Abed-Elmageed, and D. Z. Husein (2019). Eco-friendly approach to synthesize selenium nanoparticles: photocatalytic degradation of sunset yellow Azo Dye and anticancer activity. ChemistrySelect 4, 9018–9026. https://doi.org/10.1002/SLCT.201901267.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Długosz.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Długosz, O., Chmielowiec-Korzeniowska, A., Drabik, A. et al. Bioactive Selenium Nanoparticles Synthesized from Propolis Extract and Quercetin Based on Natural Deep Eutectic Solvents (NDES). J Clust Sci 34, 1401–1412 (2023). https://doi.org/10.1007/s10876-022-02306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02306-6

Keywords

Navigation