Skip to main content

Advertisement

Log in

Enhanced Effect of SiC Nanoparticles Combined with Nanohydroxyapatite Material to Stimulate Bone Regenerations in Femoral Fractures Treatment

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Adequate bone substitute's in osseointegration is not only easy way to achieve osteoporotic. The nano-hydroxyapatite of the osteoporotic bone, covered by osteoblasts, was a lighter in crystal size and smaller crystal phase than conventional materials. Herein, we used materials such as interfacial connection of silicon carbide and hydroxyapatite nanoparticles for osteoporotic study were prepared by electrochemical deposition method. Live/Dead cell assay; the cell viability of SiC@Hydroxyapatite assembly was essentially higher activity than nano-hydroxyapatite. Also, Osteocalcin results, SiC@ Hydroxyapatite 62.33 ± 0.05 (ng/mL) was higher calcin value than nano-hydroxyapatite (39.88 ± 0.12 ng/mL) and silica carbide (15.12 ± 0.04 ng/mL), respectively. Osteoblast cell adhesion, SiC@ Hydroxyapatite motivates a surface-explicit response as a consequence of the hydroxyapatite valuable mineral-based morphological nanostructures. Furthermore, the silica carbide @ nano-hydroxyapatite particles materials shows good biocompatibility, and also the as-synthesized nanomaterial has an excellent developing for osteoporotic and adaptable bone formation in femoral fractures applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Duan, C. Ning, and T. Tang (2013). J. Biomed. Mater. Res. A 7, 1955.

    Article  Google Scholar 

  2. S. Bose, S. Dasgupta, S. Tarafder, and A. Bandyopadhyay (2010). Acta Biomater. 6, 3782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. J. Weng and Y. Su (2013). Biochim. Biophys. Acta 3, 2839.

    Article  Google Scholar 

  4. C. Morsczeck (2006). Calcif. Tissue Int. 78, 98.

    Article  CAS  PubMed  Google Scholar 

  5. J. Wang, J. Guo, J. Liu, L. Wei, and G. Wu (2014). Int. J. Mol. Sci. 15, 10150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Z. Shi, X. Huang, Y. Cai, R. Tang, and D. Yang (2009). Acta Biomater. 5, 338.

    Article  CAS  PubMed  Google Scholar 

  7. L. Wu, L. Lin, and Y.-X. Qin (2015). Tissue Eng Part A 21, 53.

    Article  PubMed  Google Scholar 

  8. N. S. Remya, S. Syama, V. Gayathri, H. K. Varma, and P. V. Mohanan (2014). Colloids Surf. B 117, 389.

    Article  CAS  Google Scholar 

  9. Y. Han, X. Wang, H. Dai, and S. Li (2012). ACS Appl. Mater. Interfaces 4, 4616.

    Article  CAS  PubMed  Google Scholar 

  10. H. Shi, X. Ye, F. Hee, and J. Ye (2019). Colloids Surf. B 177, 462.

    Article  CAS  Google Scholar 

  11. S. Sahmani, M. Shahali, M. Ghadiri Nejad, A. Khandan, M. M. Aghdam, and S. Saber-Samandari (2019). Eur. Phys. J. Plus 134, 7.

    Article  Google Scholar 

  12. C. R. Gautam, S. Kumar, S. Biradar, S. Jose, and V. K. Mishra (2016). RSC Adv. 6, 67565.

    Article  CAS  Google Scholar 

  13. H. Tavassoli, J. Javadpour, M. Taheri, M. Mehrjou, N. Koushki, F. Arianpour, M. Majidi, J. I. Mobarakeh, B. Negahdari, P. Chan, M. E. Warkiani, and S. Bonakdar (2018). ACS Biomater. Sci. Eng. 4, 1324.

    Article  CAS  PubMed  Google Scholar 

  14. C. Gautam, D. Chakravarty, A. Gautam, C. S. Tiwary, C. F. Woellner, V. K. Mishra, N. Ahmad, S. Ozden, S. Jose, S. Biradar, R. Vajtai, R. Trivedi, D. S. Galvao, and P. M. Ajayan (2018). ACS Omega 3, 6013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Zhou and J. Lee (2011). Acta Biomater. 7, 2769.

    Article  CAS  PubMed  Google Scholar 

  16. M. Sadat-Shojai, M. T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi (2013). Acta Biomater. 9, 7591.

    Article  CAS  PubMed  Google Scholar 

  17. X. Wang, J. Ye, Y. Wang, and L. Chen (2007). J. Am. Ceram. Soc. 90, 962.

    Article  CAS  Google Scholar 

  18. K. K. Chew, K. L. Low, and S. H. Sharif Zein (2011). J. Mech. Behav. Biomed. Mater. 4, 331.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Orooji, M. Ghanbari, and O. Amiri (2020). J. Hazard. Mater. 389, 122079.

    Article  CAS  PubMed  Google Scholar 

  20. M. Ghanbari and M. Salavati-Niasari (2018). Inorg. Chem. 57, 11443.

    Article  CAS  PubMed  Google Scholar 

  21. M. Karami, M. Ghanbari, O. Amiri, and M. Salavati-Niasari (2020). Sep. Purif. Technol. 253, 117526.

    Article  CAS  Google Scholar 

  22. M. Salavati-Niasari, F. Farzaneh, and M. Ghandi (2002). J. Mol. Catal. A 186, 101.

    Article  CAS  Google Scholar 

  23. M. Masjedi-Arani and M. Salavati-Niasari (2016). Ultrason. Sonochem. 29, 226.

    Article  CAS  PubMed  Google Scholar 

  24. D. Ghanbari and M. Salavati-Niasari (2015). J. Ind. Eng. Chem. 24, 284.

    Article  CAS  Google Scholar 

  25. M. Yousefi, F. Gholamian, D. Ghanbari, and M. Salavati-Niasari (2011). Polyhedron 30, 1055.

    Article  CAS  Google Scholar 

  26. M. Amiri, M. Salavati-Niasari, and A. Akbari (2019). Adv. Colloid Interface Sci. 265, 29.

    Article  CAS  PubMed  Google Scholar 

  27. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, and M. Hamadanian (2016). J. Mater. Sci. 27, 4800.

    CAS  Google Scholar 

  28. M. Salavati-Niasari, Z. Fereshteh, and F. Davar (2009). Polyhedron 28, 126.

    Article  CAS  Google Scholar 

  29. M. Sato, E. B. Slamovich, and T. J. Webster (2005). Biomaterials 26, 1349.

    Article  CAS  PubMed  Google Scholar 

  30. K. Anselme (2000). Biomaterials 21, 667.

    Article  CAS  PubMed  Google Scholar 

  31. S. Suresha and B. K. Sridhara (2010). Compos Sci Technol. 70, 1652.

    Article  CAS  Google Scholar 

  32. A. Fadavi Boostani, S. Tahamtan, S. Yazdani, R. A. Khosroshahi, D. Wei, and H. Sahamirad (2016). Scr. Mater. 118, 65.

    Article  CAS  Google Scholar 

  33. C. A. Charitidis (2013). Mater. Sci. Eng. B 178, 391.

    Article  CAS  Google Scholar 

  34. Rau (2013). Thin Solid Films 543, 167.

  35. X. Zhou and P. Mohanty (2012). Electrochim. Acta 65, 134.

    Article  CAS  Google Scholar 

  36. E. Karamian, M. Abdullahi, A. Khandan, and S. Abdellah (2016). J. Alloy Compd. 679, 375.

    Article  CAS  Google Scholar 

  37. W. Nie, C. Peng, X. Zhou, et al. (2017). Carbon 116, 325.

    Article  CAS  Google Scholar 

  38. C. R. Gautam, M. Tamuk, C. W. Manpoong, S. S. Gautam, S. Kumar, A. K. Singh, and V. K. Mishra (2016). J. Mater. Sci. 51, 4973.

    Article  CAS  Google Scholar 

  39. C. R. Gautam, S. Kumar, V. K. Mishra, and S. Biradar (2017). Ceram. Int. 43, 14114.

    Article  CAS  Google Scholar 

  40. S. Kumar, C. Gautam, B. S. Chauhan, S. Srikrishna, R. S. Yadav, and S. B. Rai (2020). Ceram. Int. 46, 16235.

    Article  CAS  Google Scholar 

  41. M. Gautam, C. Gautam, M. Mishra, S. Sahu, R. Nanda, B. Kisan, R. K. Gautam, R. Prakash, K. Sharma, D. Singh, and S. S. Gautam (2021). Ceram. Int. 47, 30203.

    Article  CAS  Google Scholar 

  42. M. Wu, Q. Wang, X. Liu, et al. (2013). Carbon 51, 335.

    Article  CAS  Google Scholar 

  43. X. Wang, X. Zhao, W. Wang, et al. (2016). Mater. Sci. Eng. C 63, 96.

    Article  Google Scholar 

  44. Y. Liu, T. Long, S. Tang, et al. (2014). Mater. Lett. 128, 31.

    Article  CAS  Google Scholar 

  45. T. Long, Y. Liu, S. Tang, et al. (2015). J. Biomed. Mater. Res. B 102, 1740.

    Article  Google Scholar 

  46. X. Zhao, J. Yang, H. Xin, et al. (2018). Mater. Sci. Eng. C 91, 135.

    Article  CAS  Google Scholar 

  47. D. M. Vranceanu, C. M. Cotrut, M. Abramowicz, et al. (2016). Ceram. Int. 42, 10085.

    Article  CAS  Google Scholar 

  48. H. Shokrollahi, F. Salimi, and A. Doostmohammadi (2017). J. Mech. Behav. Biomed. Mater. 74, 365.

    Article  CAS  PubMed  Google Scholar 

  49. P. Aspenberg, A. Anttila, Y. T. Konttinen, et al. (1996). Biomaterials 17, 807.

    Article  CAS  PubMed  Google Scholar 

  50. L. Ling, W. H. Xu, L. Feng, Y. Liu, D. Q. Cai, N. Wen, and W. J. Zheng (2016). Int. J. Mol. Med. 37, 1475.

    Article  Google Scholar 

  51. R. Zhao, P. Xie, K. Zhang, Z. Tang, X. Chen, X. Zhu, Y. Fan, X. Yang, and X. Zhang, Acta Biomater. https://doi.org/10.1016/j.actbio.2017.07.009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Liu or Changchun Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Ma, D., Liu, H. et al. Enhanced Effect of SiC Nanoparticles Combined with Nanohydroxyapatite Material to Stimulate Bone Regenerations in Femoral Fractures Treatment. J Clust Sci 34, 1633–1640 (2023). https://doi.org/10.1007/s10876-022-02298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02298-3

Keywords

Navigation