Skip to main content

Advertisement

Log in

Computation Assisted Design and Prediction of Alkali-Metal-Centered B12N12 Nanoclusters for Efficient H2 Adsorption: New Hydrogen Storage Materials

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Hydrogen is clean energy source that can replace fossil fuels, considering the great need for clean and environmentally friendly energy. Researchers are busy developing new materials for efficient hydrogen storage. Herein, we present the detailed analysis of hydrogen adsorption on pristine B12N12 as well as alkali metals (Li, Na and K) centered B12N12. B3LYP/6-31G(d,p) basis set of DFT has been used in this investigation. These parameters are carried out to analyze the structure, stability, and reactivity of centered nano-cage towards hydrogen. Firstly, we optimized alkali metals (Li, N,a and K) centered nanocage. And then these nano-clusters are analyzed for hydrogen adsorption. Adsorption energies, bond lengths, HOMO–LUMO gap, molecular electrostatic potential, charge density, and PDOS analysis are performed by using the B3LYP/6-31(d,p) basis set of DFT. All centered nano-cages offer better adsorption of hydrogen as compared to pure B12N12. Dipole moment analysis indicates that a high charge density exists when H2 is adsorbed on metals centered in B12N12. MEP shows that charge separation occurred when hydrogen is adsorbed on a metals-centered nano-cage. HOMO–LUMO energy gap investigation shows that LUMO shows stabilization while HOMO is destabilized when metal or hydrogen are in contact with BN nano-cage. Alkali metals encapsulation can improve the chemical and physical properties of B12N12. A novel type of system for developing hydrogen storage materials was finally proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. Ahmadi (2012). Computat. Mater. Sci. 54, 115.

    Article  CAS  Google Scholar 

  2. L. Schlapbach, A. Zütte (2011) World Sci. 265.

  3. M. Dresselhaus and I. Thomas (2001). Nature 414, 332.

    Article  CAS  PubMed  Google Scholar 

  4. L. Schlapbach and A. Züttel (2001). Nature 414, 353.

    Article  CAS  PubMed  Google Scholar 

  5. J. Beheshtian and I. Ravaei (2016). Appl. Surf. Sci. 368, 76.

    Article  CAS  Google Scholar 

  6. K. Chandrakumar and S. K. Ghosh (2008). Nano Lett. 8, 13.

    Article  CAS  PubMed  Google Scholar 

  7. K. Gopalsamy and V. Subramanian (2014). Int. J. Hydrog. Energy 39, 2549.

    Article  CAS  Google Scholar 

  8. X. Li, S. Wang, Y. Zhu, G. Yang, and P. Zheng (2015). Int. J. Hydrog. Energy 40, 330.

    Article  Google Scholar 

  9. J. P. B. Ramirez, D. Halm, J.-C. Grandidier, and S. Villalonga (2015). Int. J. Hydrog. Energy 40, 13165.

    Article  Google Scholar 

  10. R. Loisel, L. Baranger, N. Chemouri, S. Spinu, and S. Pardo (2015). Int. J. Hydrog. Energy 40, 6727.

    Article  CAS  Google Scholar 

  11. M. Ismail (2016). Mater. Today 3, S80.

    Google Scholar 

  12. J. A. Ritter, A. D. Ebner, J. Wang, and R. Zidan (2003). Mater. Today 6, 18.

    Article  CAS  Google Scholar 

  13. F. Schüth, B. Bogdanovi, and M. Felderhoff (2004) Chem. Commun. 2249.

  14. A. Lale, S. Bernard, and U. B. Demirci (2018). ChemPlusChem 83, 888.

    Article  CAS  Google Scholar 

  15. K. Kalateh, G. A. Cordshooli, and S. Kheirollahpoor (2017). Nanotubes Carbon Nanostruct. 25, 459.

    Article  CAS  Google Scholar 

  16. W.-J. Xu, Z.-Y. Hu, and X.-H. Shao (2012). Acta Physico-Chimica Sinica 28, 1721.

    Article  CAS  Google Scholar 

  17. W. Andreoni, A. Curioni, J. M. Kroes, F. Pietrucci, and O. Gröning (2012). J. Phys. Chem. C 116, 269.

    Article  CAS  Google Scholar 

  18. Z. Li, G. Zhu, G. Lu, S. Qiu, and X. Yao (2010). J. Am. Chem. Soc. 132, 1490.

    Article  CAS  PubMed  Google Scholar 

  19. J. Iqbal, R. Ludwig, and K. Ayub (2017). Mater. Res. Bull. 92, 113.

    Article  Google Scholar 

  20. S. Wen, W. Deng, K. Han, and B. Endohedral (2008). J. Phys. Chem. C 112, 12195.

    Article  CAS  Google Scholar 

  21. N. Karachi and A. Boshra (2018). Heteroatom Chem. 29, e21435.

    Article  Google Scholar 

  22. M. Moral, J. M. Granadino-Roldán, A. Garzón, G. García, and M. Fernández-Gómez (2011). Chem. Phys. 379, 51.

    Article  CAS  Google Scholar 

  23. E. Tahmasebi, E. Shakerzadeh, and Z. Biglari (2016). Appl. Surf. Sci. 363, 197.

    Article  CAS  Google Scholar 

  24. A. New (2008). Nano Lett. 8, 3166.

    Article  Google Scholar 

  25. N. S. Venkataramanan, R. V. Belosludov, R. Note, R. Sahara, H. Mizuseki, and Y. Kawazoe (2010). Chem. Phys. 377, 54.

    Article  CAS  Google Scholar 

  26. M. Valetas, M. Verite, A. Bessaudou, F. Cosset, and J. Vareille (2005). Comput. Mater. Sci. 33, 163.

    Article  CAS  Google Scholar 

  27. L. Zhou and S.-Q. Shi (2002). Comput. Mater. Sci. 23, 166.

    Article  CAS  Google Scholar 

  28. R. T. Paine and C. K. Narula (1990). Chem. Rev. 90, 73.

    Article  CAS  Google Scholar 

  29. T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara, and K. Suganuma (2000). Mater. Sci. Eng. B 74, 206.

    Article  Google Scholar 

  30. S. Homeyer and W. Sachtler, Design of Metal Clusters in Nay Zeolite, Studies in Surface Science and Catalysis. (Elsevier, Amsterdam, 1989), pp. 975–984.

    Google Scholar 

  31. H. Haberland, Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms (Springer, New York, 2013).

    Google Scholar 

  32. B. K. Rao, P. Jena, S. Burkart, G. Ganteför, and G. Seifert (2001). Phys. Rev. Lett. 86, 692.

    Article  CAS  PubMed  Google Scholar 

  33. S. K. Yadav and J. W. Cho (2013). Appl. Surf. Sci. 266, 360.

    Article  CAS  Google Scholar 

  34. E. Shakerzadeh, E. Tahmasebi, and Z. Biglari (2016). J. Mol. Liquids 221, 443.

    Article  CAS  Google Scholar 

  35. M. Eslami, V. Vahabi, and A. A. Peyghan (2016). Physica E 76, 6.

    Article  CAS  Google Scholar 

  36. S. Jia, Z. Wang, N. Ding, Y.-L.E. Wong, X. Chen, G. Qiu, and T.-W.D. Chan (2016). Anal. Chim. Acta 936, 123.

    Article  CAS  PubMed  Google Scholar 

  37. J. Beheshtian, M. B. Tabar, Z. Bagheri, and A. A. Peyghan (2013). J. Mol. Modeling 19, 1445.

    Article  CAS  Google Scholar 

  38. A. A. Peyghan, S. A. Aslanzadeh, and A. Samiei (2014). Monatshefte für Chemie-Chemical Monthly 145, 1083.

    Article  CAS  Google Scholar 

  39. A. V. Moradi, A. A. Peyghan, S. Hashemian, and M. T. Baei (2012). Bull. Korean Chem. Soc. 33, 3285.

    Article  CAS  Google Scholar 

  40. A. Ahmadi, J. Beheshtian, and N. L. Hadipour (2011). Physica E 43, 1717.

    Article  CAS  Google Scholar 

  41. J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. A. Peyghan (2012). Chin. J. Chem. Phys. 25, 60.

    Article  CAS  Google Scholar 

  42. M. T. Baei, A. A. Peyghan, and Z. Bagheri (2012). Bull. Korean Chem. Soc. 33, 3338.

    Article  CAS  Google Scholar 

  43. M. D. Esrafili and R. Nurazar (2014). Surf. Sci. 626, 44.

    Article  CAS  Google Scholar 

  44. J. Beheshtian, A. A. Peyghan, Z. Bagheri, and M. Kamfiroozi (2012). Struct. Chem. 23, 1567.

    Article  CAS  Google Scholar 

  45. A. K. Kandalam, M. Blanco, and R. Pandey (2001). J. Phys. Chem. B 105, 6080.

    Article  CAS  Google Scholar 

  46. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson et al. Gaussian09, Rev. C. 01 (Gaussian, Inc., Wallingford, 2010).

  47. A. Soltani, M. T. Baei, M. R. Taghartapeh, E. T. Lemeski, and S. Shojaee (2015). Struct. Chem. 26, 685.

    Article  CAS  Google Scholar 

  48. A. S. Rad, Y. M. Jouibary, V. P. Foukolaei, and E. Binaeian (2016). Curr. Appl. Phys. 16, 527.

    Article  Google Scholar 

  49. A. S. Rad and V. P. Foukolaei (2015). Synth. Met. 210, 171.

    Article  Google Scholar 

  50. F. Jensen and H. Toftlund (1993). Chem. Phys. Lett. 201, 89.

    Article  CAS  Google Scholar 

  51. L.-H. Gan and J.-Q. Zhao (2009). Physica E 41, 1249.

    Article  CAS  Google Scholar 

  52. R. G. Parr, L. V. Szentpály, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922.

    Article  CAS  Google Scholar 

  53. T. Koopmans (1933). Physica 1, 104.

    Article  CAS  Google Scholar 

  54. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules International Series of Monographs on Chemistry, vol. 3. (Oxford University Press, New York, 1994), pp. 14312–14321.

    Google Scholar 

  55. A. Bongini, M. Panunzio, G. Piersanti, E. Bandini, G. Martelli, G. Spunta, and A. Venturini (2000). Eur. J. Org. Chem. 2000, 2379.

    Article  Google Scholar 

  56. T. Lu, Multiwfn: A Multifunctional Wave Function Analyzer, version 3.3. 7; (2015).

  57. S. S. Li, Energy Band Theory, Semiconductor Physical Electronics. (Springer, New York, 2006), pp. 61–104.

    Google Scholar 

  58. G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, and K. R. Poeppelmeier (2017). J. Am. Chem. Soc. 139, 10645.

    Article  CAS  PubMed  Google Scholar 

  59. M. Mutailipu, M. Zhang, B. Zhang, L. Wang, Z. Yang, X. Zhou, and S. Pan (2018). Angew. Chem. Int. Ed. 57, 6095.

    Article  CAS  Google Scholar 

  60. M. Mutailipu, K. R. Poeppelmeier*, and S. Pan* (2021) Chem. Rev. 121, 1130.

  61. M. Mutailipu, Z. Xie, X. Su, M. Zhang, Y. Wang, Z. Yang, M. R. S. A. Janjua, and S. Pan (2017). J. Am. Chem. Soc. 139, 18397.

    Article  CAS  PubMed  Google Scholar 

  62. A. Mahmood (2019). J. Clust. Sci. 30, 1123.

    Article  CAS  Google Scholar 

  63. A. Mahmood, A. Tang, X. Wang, and E. Zhou (2019). Phys. Chem. Chem. Phys. 21, 2128.

    Article  CAS  PubMed  Google Scholar 

  64. A. Mahmood, S.U.-D. Khan, and U. A. Rana (2014). J. Comput. Electron. 13, 1033.

    Article  CAS  Google Scholar 

  65. A. Mahmood, J. Yang, J. Hu, X. Wang, A. Tang, Y. Geng, Q. Zeng, and E. Zhou (2018). J. Phys. Chem. C 122, 29122.

    Article  CAS  Google Scholar 

  66. A. Mahmood, M. I. Abdullah, and S.U.-D. Khan (2015). Spectrochim. Acta Part A 139, 425.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saba Jamil or Muhammad Ramzan Saeed Ashraf Janjua.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehboob, M.Y., Hussain, R., Younas, F. et al. Computation Assisted Design and Prediction of Alkali-Metal-Centered B12N12 Nanoclusters for Efficient H2 Adsorption: New Hydrogen Storage Materials. J Clust Sci 34, 1237–1247 (2023). https://doi.org/10.1007/s10876-022-02294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02294-7

Keywords

Navigation