Skip to main content

Advertisement

Log in

Structures and Spectroscopic Properties of Hydrated Zinc(II) Ion Clusters [Zn2+(H2O)n (n = 1−8)] by Ab Initio Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Global search on small hydrated zinc(II) clusters [Zn2+(H2O)n (n = 1–8)] is executed based on comprehensive genetic algorithm with density functional theory. The subsequent high level ab initio calculation provides accurate structures, energies and spectroscopic properties of the clusters. For n ≤ 6, all the water molecules are coordinated waters in global minima, while two five-coordinated structures possesses the lowest energies for n = 7 and 8 at 0 K. Besides, the four-coordinated structures could equally populate with the global minima above room temperature for n = 5 and 6. Furthermore, the infrared (IR) spectra with anharmonic correction could reproduce the experimental spectra quite well, and effectively discriminate the isomers in experiment, which might be selected by the energetic driving of water-loss reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. F. Hochella, S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks, and B. S. Twining (2008). Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 319, 1631–1635.

    Article  CAS  PubMed  Google Scholar 

  2. C. W. Bock, A. K. Katz, and J. P. Glusker (1995). Hydration of Zinc Ions: A Comparison with Magnesium and Beryllium Ions. J. Am. Chem. Soc. 117, 3754–3765.

    Article  CAS  Google Scholar 

  3. M. Hartmann, T. Clark and R. van Eldik, in Theoretical Study of the Water Exchange Reaction on Divalent Zinc Ion Using Density Functional Theory, Molecular modeling annual (Springer, 1996), pp. 354–357.

  4. M. Pavlov, P. E. Siegbahn, and M. Sandström (1998). Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory. J. Phys. Chem. A 102, 219–228.

    Article  CAS  Google Scholar 

  5. S. Lee, J. Kim, J. K. Park, and K. S. Kim (1996). Ab Initio Study of the Structures, Energetics, and Spectra of Aquazinc (ii). J. Phys. Chem. 100, 14329–14338.

    Article  CAS  Google Scholar 

  6. M. Hartmann, T. Clark, and R. van Eldik (1997). Hydration and Water Exchange of Zinc (ii) Ions. Application of Density Functional Theory. J. Am. Chem. Soc. 119, 7843–7850.

    Article  CAS  Google Scholar 

  7. W. W. Rudolph and C. C. Pye (1999). Zinc (ii) Hydration in Aqueous Solution. A Raman Spectroscopic Investigation and an Ab-Initio Molecular Orbital Study. Phys. Chem. Chem. Phys. 1, 4583–4593.

    Article  CAS  Google Scholar 

  8. S. De, S. M. Ali, A. Ali, and V. Gaikar (2009). Micro-Solvation of the Zn2+ Ion—a Case Study. Phys. Chem. Chem. Phys. 11, 8285–8294.

    Article  CAS  PubMed  Google Scholar 

  9. T. E. Cooper, D. Carl, and P. Armentrout (2009). Hydration Energies of Zinc (ii): Threshold Collision-Induced Dissociation Experiments and Theoretical Studies. J. Phys. Chem. A 113, 13727–13741.

    Article  CAS  PubMed  Google Scholar 

  10. T. E. Cooper, J. T. O’Brien, E. R. Williams, and P. Armentrout (2010). Zn2+ Has a Primary Hydration Sphere of Five: Ir Action Spectroscopy and Theoretical Studies of Hydrated Zn2+ Complexes in the Gas Phase. J. Phys. Chem. A 114, 12646–12655.

    Article  CAS  PubMed  Google Scholar 

  11. J. C. Wu, J. P. Piquemal, R. Chaudret, P. Reinhardt, and P. Ren (2010). Polarizable Molecular Dynamics Simulation of Zn (ii) in Water Using the Amoeba Force Field. J. Chem. Theory Comput. 6, 2059–2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Zhu, X. Xiao, C. Ji, and J. Z. Zhang (2013). A New Quantum Calibrated Force Field for Zinc-Protein Complex. J. Chem. Theory Comput. 9, 1788–1798.

    Article  CAS  PubMed  Google Scholar 

  13. S. Obst and H. Bradaczek (1997). Molecular Dynamics Simulations of Zinc Ions in Water Using Charmm. J. Mol. Model. 3, 224–232.

    Article  CAS  Google Scholar 

  14. G. Del Frate and A. Nikitin (2018). Including Electronic Screening in Classical Force Field of Zinc Ion for Biomolecular Simulations. ChemistrySelect 3, 12367–12370.

    Article  CAS  Google Scholar 

  15. G. Chillemi, P. D’Angelo, N. V. Pavel, N. Sanna, and V. Barone (2002). Development and Validation of an Integrated Computational Approach for the Study of Ionic Species in Solution by Means of Effective Two-Body Potentials. The Case of Zn2+, Ni2+, and Co2+ in Aqueous Solutions. J. Am. Chem. Soc. 124, 1968–1976.

    Article  CAS  PubMed  Google Scholar 

  16. A. Kuzmin, S. Obst, and J. Purans (1997). X-Ray Absorption Spectroscopy and Molecular Dynamics Studies of Hydration in Aqueous Solutions. J. Phys.: Condens. Mat. 9, 10065.

    CAS  Google Scholar 

  17. E. Cauët, S. Bogatko, J. H. Weare, J. L. Fulton, G. K. Schenter, and E. J. Bylaska (2010). Structure and Dynamics of the Hydration Shells of the Zn2+ Ion from Ab Initio Molecular Dynamics and Combined Ab Initio and Classical Molecular Dynamics Simulations. J. Chem. Phys. 132, 194502.

    Article  PubMed  Google Scholar 

  18. A. M. Mohammed, H. H. Loeffler, Y. Inada, K. I. Tanada, and S. Funahashi (2005). Quantum Mechanical/Molecular Mechanical Molecular Dynamic Simulation of Zinc (ii) Ion in Water. J. Mol. Liq. 119, 55–62.

    Article  CAS  Google Scholar 

  19. X. Liu, X. Lu, R. Wang, and E. J. Meijer (2011). Understanding Hydration of Zn2+ in Hydrothermal Fluids with Ab Initio Molecular Dynamics. Phys. Chem. Chem. Phys. 13, 13305–13309.

    Article  CAS  PubMed  Google Scholar 

  20. M. Ducher, F. Pietrucci, E. Balan, G. Ferlat, L. Paulatto, and M. Blanchard (2017). Van Der Waals Contribution to the Relative Stability of Aqueous Zn2+ Coordination States. J. Chem. Theory Comput. 13, 3340–3347.

    Article  CAS  PubMed  Google Scholar 

  21. M. Xu, T. Zhu, and J. Z. Zhang (2019). Molecular Dynamics Simulation of Zinc Ion in Water with an Ab Initio Based Neural Network Potential. J. Phys. Chem. A 123, 6587–6595.

    Article  CAS  PubMed  Google Scholar 

  22. C. Jana, G. Ohanessian, and C. Clavaguéra (2016). Theoretical Insight into the Coordination Number of Hydrated Mathrm Zn2+ from Gas Phase to Solution. Theor. Chem. Acc. 135, 1–13.

    Article  CAS  Google Scholar 

  23. A. Musinu, G. Paschina, G. Piccaluga, and M. Magini (1982). The Sulphate Ion in Aqueous Solution: An X-Ray Diffraction Study of a ZnSO4 Solution. J. Appl. Crystallogr. 15, 621–625.

    Article  CAS  Google Scholar 

  24. R. Caminiti, P. Cucca, M. Monduzzi, G. Saba, and G. Crisponi (1984). Divalent Metal-Acetate Complexes in Concentrated Aqueous Solutions. An X-Ray Diffraction and Nmr Spectroscopy Study. J. Chem. Phys. 81, 543–551.

    Article  CAS  Google Scholar 

  25. S. P. Dagnall, D. N. Hague, and A. D. Towl (1978). X-Ray Diffraction Study of Aqueous Zinc (ii) Nitrate. J. Chem. Soc., Faraday Trans. 2 (78), 2161–2167.

    Google Scholar 

  26. A. Munoz-Paez, R. R. Pappalardo, and E. Sanchez Marcos (1995). Determination of the Second Hydration Shell of Cr3+ and Zn2+ in Aqueous Solutions by Extended X-Ray Absorption Fine Structure. J. Am. Chem. Soc. 117, 11710–11720.

    Article  CAS  Google Scholar 

  27. T. Miyanaga, I. Watanabe, and S. Ikeda (1988). Amplitude in Exafs and Ligand Exchange Reaction of Hydrated 3d Transition Metal Complexes. Chem. Lett. 17, 1073–1076.

    Article  Google Scholar 

  28. K. Ozutsumi, T. Yamaguchi, H. Ohtaki, K. Tohji, and Y. Udagawa (1985). Structure of Ni (ii)–and Zn (ii)–Glycinato Complexes in Aqueous Solution Determined by Exafs Spectroscopy. B. Chem. Soc. Jap. 58, 2786–2792.

    Article  CAS  Google Scholar 

  29. Y. Inada, K. Sugimoto, K. Ozutsumi, and S. Funahashi (1994). Solvation Structures of Manganese (ii), Iron (ii), Cobalt (ii), Nickel (ii), Copper (ii), Zinc (ii), Cadmium (ii), and Indium (ii) Ions in 1, 1, 3, 3-Tetramethylurea as Studied by Exafs and Electronic Spectroscopy. Variation of Coordination Number. Inorg. Chem. 33, 1875–1880.

    CAS  Google Scholar 

  30. P. D’Angelo, M. Benfatto, S. Della Longa, and N. Pavel (2002). Combined Xanes and Exafs Analysis of Co2+, Ni2+, and Zn2+ Aqueous Solutions. Phys. Rev. B 66, 064209.

    Article  Google Scholar 

  31. P. D’Angelo, V. Barone, G. Chillemi, N. Sanna, W. Meyer-Klaucke, and N. V. Pavel (2002). Hydrogen and Higher Shell Contributions in Zn2+, Ni2+, and Co2+ Aqueous Solutions: An X-Ray Absorption Fine Structure and Molecular Dynamics Study. J. Am. Chem. Soc. 124, 1958–1967.

    Article  CAS  PubMed  Google Scholar 

  32. F. Stellato, M. Calandra, F. d’Acapito, E. De Santis, G. La Penna, G. Rossi, and S. Morante (2018). Multi-Scale Theoretical Approach to X-Ray Absorption Spectra in Disordered Systems: An Application to the Study of Zn (ii) in Water. Phys. Chem. Chem. Phys. 20, 24775–24782.

    Article  CAS  PubMed  Google Scholar 

  33. V. Migliorati, A. Zitolo, G. Chillemi, and P. D’Angelo (2012). Influence of the Second Coordination Shell on the Xanes Spectra of the Zn2+ Ion in Water and Methanol. ChemPlusChem 77, 234–239.

    Article  CAS  Google Scholar 

  34. A. A. Shvartsburg and K. M. Siu (2001). Is There a Minimum Size for Aqueous Doubly Charged Metal Cations? J. Am. Chem. Soc. 123, 10071–10075.

    Article  CAS  PubMed  Google Scholar 

  35. A. T. Blades, P. Jayaweera, M. G. Ikonomou, and P. Kebarle (1990). Ion-Molecule Clusters Involving Doubly Charged Metal Ions (M2+). Int. J. Mass Spectrom. 102, 251–267.

    Article  CAS  Google Scholar 

  36. T. E. Cooper and P. Armentrout (2009). Experimental and Theoretical Investigation of the Charge-Separation Energies of Hydrated Zinc (ii): Redefinition of the Critical Size. J. Phys. Chem. A 113, 13742–13751.

    Article  CAS  PubMed  Google Scholar 

  37. J. T. O’Brien and E. R. Williams (2011). Coordination Numbers of Hydrated Divalent Transition Metal Ions Investigated with Irpd Spectroscopy. J. Phys. Chem. A 115, 14612–14619.

    Article  PubMed  Google Scholar 

  38. B. Bandyopadhyay, K. N. Reishus, and M. A. Duncan (2013). Infrared Spectroscopy of Solvation in Small Zn+(H2O)n Complexes. J. Phys. Chem. A 117, 7794–7803.

    Article  CAS  PubMed  Google Scholar 

  39. K. Müller-Dethlefs and P. Hobza (2000). Noncovalent Interactions: A Challenge for Experiment and Theory. Chem. Rev. 100, 143–168.

    Article  PubMed  Google Scholar 

  40. D. J. Miller and J. M. Lisy (2008). Entropic Effects on Hydrated Alkali-Metal Cations: Infrared Spectroscopy and Ab Initio Calculations of M+(H2O)X= 2–5 Cluster Ions for M= Li, Na, K, and Cs. J. Am. Chem. Soc. 130, 15393–15404.

    Article  CAS  PubMed  Google Scholar 

  41. R. Shi, P. Wang, L. Tang, X. Huang, Y. Chen, Y. Su, and J. Zhao (2018). Structures and Spectroscopic Properties of F(H2O)N with N= 1–10 Clusters from a Global Search Based on Density Functional Theory. J. Phys. Chem. A 122, 3413–3422.

    Article  CAS  PubMed  Google Scholar 

  42. J. J. Fifen and N. Agmon (2016). Structure and Spectroscopy of Hydrated Sodium Ions at Different Temperatures and the Cluster Stability Rules. J. Chem. Theory Comput. 12, 1656–1673.

    Article  CAS  PubMed  Google Scholar 

  43. J. Zhao, R. Shi, L. Sai, X. Huang, and Y. Su (2016). Comprehensive Genetic Algorithm for Ab Initio Global Optimisation of Clusters. Mol. Simulat. 42, 809–819.

    Article  CAS  Google Scholar 

  44. A. D. Becke (1988). Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 38, 3098.

    Article  CAS  Google Scholar 

  45. C. Lee, W. Yang, and R. G. Parr (1988). Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  46. B. Delley (2000). From Molecules to Solids with the Dmol 3 Approach. J. Chem. Phys. 113, 7756–7764.

    Article  CAS  Google Scholar 

  47. P. Wang, R. Shi, Y. Su, L. Tang, X. Huang, and J. Zhao (2019). Hydrated Sodium Ion Clusters [Na+(H2O)N (N= 1–6)]: An Ab Initio Study on Structures and Non-Covalent Interaction. Front. Chem. 7, 624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. C. Møller and M. S. Plesset (1934). Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 46, 618.

    Article  Google Scholar 

  49. Y. Liu, J. Zhao, F. Li, and Z. Chen (2013). Appropriate Description of Intermolecular Interactions in the Methane Hydrates: An Assessment of Dft Methods. J. Comput. Chem. 34, 121–131.

    Article  PubMed  Google Scholar 

  50. R. Shi, X. Huang, Y. Su, H. G. Lu, S. D. Li, L. Tang, and J. Zhao (2017). Which Density Functional Should Be Used to Describe Protonated Water Clusters? J. Phys. Chem. A 121, 3117–3127.

    Article  CAS  PubMed  Google Scholar 

  51. T. H. Dunning (1989). Gaussian-Basis Sets for Use in Correlated Molecular Calculations. 1. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 90, 1007–1023.

    Article  CAS  Google Scholar 

  52. R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison (1992). Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 96, 6796–6806.

    Article  CAS  Google Scholar 

  53. V. Barone (2005). Anharmonic Vibrational Properties by a Fully Automated Second-Order Perturbative Approach. J. Chem. Phys. 122, 014108.

    Article  Google Scholar 

  54. V. Barone, J. Bloino, C. A. Guido, and F. Lipparini (2010). A Fully Automated Implementation of Vpt2 Infrared Intensities. Chem. Phys. Lett. 496, 157–161.

    Article  CAS  Google Scholar 

  55. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, and H. Nakatsuji, Gaussian 16, Revision A. 03 (Gaussian Inc, Wallingford Ct. City, 2016).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11674046, 91961204 and 12004095), Scientific and Technological Research in Higher Education Institutions of Hebei Province (BJK2022057), Handan Science and Technology Bureau (21422901248), and the Supercomputing Center of Dalian University of Technology, Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Su, Y., Shi, R. et al. Structures and Spectroscopic Properties of Hydrated Zinc(II) Ion Clusters [Zn2+(H2O)n (n = 1−8)] by Ab Initio Study. J Clust Sci 34, 1625–1632 (2023). https://doi.org/10.1007/s10876-022-02277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02277-8

Keywords

Navigation