Skip to main content
Log in

Modulated Antimicrobial Activity and Drug-Protein Interaction Ability of Zinc Oxide and Cadmium Sulfide Nanoparticles: Effect of Doping with Few First-Row Transition Metals

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

ZnO and CdS nanoparticle (NP) doped with first row transition metal ions showed significant antibacterial activity towards Gram-negative as well as Gram-positive bacteria. While, the antibacterial activity of ZnO NPs was found to be significant in Gram-negative bacteria, the effect was comparatively less pronounced towards Gram-positive bacteria. The activity was found to increase with increasing concentration of the NPs. Doping of ZnO NP with Fe atom resulted in significant reduction in the efficacy its antimicrobial activity. In comparison, CdS quantum dot showed antibacterial activity both in Gram-negative and Gram-positive bacteria. While Co doped CdS particles did not show any modulated antibacterial activity; doping by Fe atom augments it with increasing the dopant concentration. The interaction of anti-diabetic drug chlorpropamide is significantly stronger with bovine serum albumin adsorbed on Fe-doped CdS in comparison with undoped NPs without significant alteration in the protein secondary structure. Present study reveals that the drug binding ability of proteins can be significantly modulated on judicious choice of NP system and also the dopant. The modulation in antimicrobial activity and the drug binding ability of the adsorbed protein was explained on the basis of structural parameters and different physicochemical properties of the doped NP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The experimental data associated with this manuscript will be made available on request.

Code Availability

Not applicable.

References

  1. M. Kopp, S. Kollenda, and M. Epple (2017). Nanoparticle-protein interactions: therapeutic approaches and supramolecular chemistry. Acc. Chem. Res. 50, 1383–1390. https://doi.org/10.1021/acs.accounts.7b00051.

    Article  CAS  PubMed  Google Scholar 

  2. F. Leve, D. P. Bonfim, G. Fontes, and J. A. Morgado-Díaz (2019). Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine 14, 1565–1578. https://doi.org/10.2217/nnm-2019-0023.

    Article  CAS  PubMed  Google Scholar 

  3. A. Abdal Dayem, M. K. Hossain, S. B. Lee, K. Kim, S. K. Saha, G. M. Yang, H. Y. Choi, and S. G. Cho (2017). The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 18, 120–141. https://doi.org/10.3390/ijms18010120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Meghana, P. Kabra, S. Chakraborty, and N. Padmavathy (2015). Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 5, 12293–12299. https://doi.org/10.1039/C4RA12163E.

    Article  CAS  Google Scholar 

  5. I. Sondi and B. Salopek-Sondi (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182. https://doi.org/10.1016/j.jcis.2004.02.012.

    Article  CAS  PubMed  Google Scholar 

  6. N. Padmavathy and R. Vijayaraghavan (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9, 035004–035011. https://doi.org/10.1088/1468-6996/9/3/035004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Li, X. Liu, Y. Qiao, H. Zhu, J. Li, T. Cui, and C. Ding (2013). Enhanced bioactivity and bacteriostasis effect of TiO2 nanofilms with favorable biomimetic architectures on titanium surface. RSC Adv. 3, 11214–11225. https://doi.org/10.1039/C3RA23252B.

    Article  CAS  Google Scholar 

  8. X. Wang, F. Yang, W. Yang, and X. Yang (2007). A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem Commun. https://doi.org/10.1039/B708662H.

    Article  Google Scholar 

  9. B. Lallo da Silva, M. P. Abuçafy, E. Berbel Manaia, J. A. Oshiro Junior, B. G. Chiari-Andréo, R. C. R. Pietro, and L. A. Chiavacci (2019). Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int. J. Nanomed. 14, 9395–9410. https://doi.org/10.2147/ijn.s216204.

    Article  CAS  Google Scholar 

  10. S. Shen and Q. Wang (2013). Rational tuning the optical properties of metal sulfide nanocrystals and their applications. Chem. Mater. 25, 1166–1178. https://doi.org/10.1021/cm302482d.

    Article  CAS  Google Scholar 

  11. A. Mehtab, J. Ahmed, S. M. Alshehri, Y. Mao, and T. Ahmed (2022). Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. Nanotechnology 33, 142001. https://doi.org/10.1088/1361-6528/ac43e7.

    Article  Google Scholar 

  12. P. Yadav, P. K. Dwivedi, S. Tonda, R. Boukherroub, and M. V. Shelke, Metal and non-metal doped metal oxides and sulfides, in M. Naushad, et al. (eds.), Green Photocatalysts, Environmental Chemistry for a Sustainable World 34 (Springer Nature Switzerland AG, Cham, 2020). https://doi.org/10.1007/978-3-030-15608-4_4.

    Chapter  Google Scholar 

  13. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt (2007). Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing. Phys. Rev. B 75 (11), 115203. https://doi.org/10.1103/PhysRevB.75.115203.

    Article  CAS  Google Scholar 

  14. W. Bousslama, H. Elhouichet, and M. Férid (2017). Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik 134, 88–98. https://doi.org/10.1016/j.ijleo.2017.01.025.

    Article  CAS  Google Scholar 

  15. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242. https://doi.org/10.1007/s40820-015-0040-x.

    Article  CAS  Google Scholar 

  16. L. Wang, C. Hu, and L. Shao (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249. https://doi.org/10.2147/IJN.S121956.

    Article  CAS  Google Scholar 

  17. S. Gurunathan, J. W. Han, D. N. Kwon, and J. H. Kim (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 9, 373–390. https://doi.org/10.1186/1556-276x-9-373.

    Article  PubMed  PubMed Central  Google Scholar 

  18. I. Barák and K. Muchová (2013). The role of lipid domains in bacterial cell processes. Int. J. Mol. Sci. 14, 4050–4065. https://doi.org/10.3390/ijms14024050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77, 2325–2331. https://doi.org/10.1128/AEM.02149-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009. https://doi.org/10.2147/ijn.s35347.

    Article  CAS  Google Scholar 

  21. V. Srivastava, D. Gusain, and Y. C. Sharma (2013). Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram. Int. 39, 9803–9808. https://doi.org/10.1016/j.ceramint.2013.04.110.

    Article  CAS  Google Scholar 

  22. J. Vidic, S. Stankic, F. Haque, D. Ciric, R. Le Goffic, A. Vidy, J. Jupille, and B. Delmas (2013). Selective antibacterial effects of mixed ZnMgO nanoparticles. J. Nanopart. Res. 15, 1595–1605. https://doi.org/10.1007/s11051-013-1595-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. K. Ravichandran, R. Rathi, M. Baneto, K. Karthika, P. V. Rajkumar, B. Sakthivel, and R. Damodaran (2015). Effect of Fe+F doping on the antibacterial activity of ZnO powder. Ceram. Int. 41, 3390–3395. https://doi.org/10.1016/j.ceramint.2014.10.121.

    Article  CAS  Google Scholar 

  24. M. Carofiglio, S. Barui, V. Cauda, and M. Laurenti (2020). Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl. Sci. 10, 5194–5237. https://doi.org/10.3390/app10155194.

    Article  CAS  PubMed  Google Scholar 

  25. T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. Meng, S. Lin, X. Wang, M. Wang, Z. Ji, J. I. Zink, L. Mädler, V. Castranova, S. Lin, and A. E. Nel (2011). Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5, 1223–1235. https://doi.org/10.1021/nn1028482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Ma, A. Hui, J. Liu, and Y. Bao (2015). Controllable synthesis of highly efficient antimicrobial agent-Fe doped sea urchin-like ZnO nanoparticles. Mater. Lett. 158, 420–423. https://doi.org/10.1016/j.matlet.2015.06.037.

    Article  CAS  Google Scholar 

  27. K. Zhou, C. Li, D. Chen, Y. Pan, Y. Tao, W. Qu, Z. Liu, X. Wang, and S. Xie (2018). A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int J Nanomed. https://doi.org/10.2147/IJN.S169935.

    Article  Google Scholar 

  28. S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Mädler, and A. E. Nel (2010). Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4, 15–29. https://doi.org/10.1021/nn901503q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Sundaria, A. Shrivastav, B. Vijay, R. Soni, S. Goyal, R. Meshugga, and K. Agrawal (2015). Synthesis of star shaped Cu doped CdS nanoparticles and their antibacterial effect. Macromol. Symp. 357, 223–228. https://doi.org/10.1002/masy.201500036.

    Article  CAS  Google Scholar 

  30. Y. Qi, T. Zhang, C. Jing, S. Liu, C. Zhang, P. J. J. Alvarez, and W. Chen (2020). Nanocrystal facet modulation to enhance transferrin binding and cellular delivery. Nat. Commun. 11, 1262. https://doi.org/10.1038/s41467-020-14972-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R. Harish, K. D. Nisha, S. Prabakaran, B. Sridevi, S. Harish, M. Navaneethan, S. Ponnusamy, Y. Hayakawa, C. Vinniee, and M. R. Ganesh (2020). Cytotoxicity assessment of chitosan coated CdS nanoparticles for bio-imaging applications. Appl. Surf. Sci. 499, 143817. https://doi.org/10.1016/j.apsusc.2019.143817.

    Article  CAS  Google Scholar 

  32. S. Naveenraj, A. M. Asiri, and S. Anandan (2013). Interaction between serum albumins and sonochemically synthesized cadmium sulphide nanoparticles: a spectroscopic study. J. Nanopart. Res. 15, 1671. https://doi.org/10.1007/s11051-013-1671-9.

    Article  Google Scholar 

  33. R. Parveen, T. N. Shamsi, and S. Fatima (2017). Nanoparticles-protein interaction: role in protein aggregation and clinical implications. Int. J. Biol. Macromol. 94, 386–395. https://doi.org/10.1016/j.ijbiomac.2016.10.024.

    Article  CAS  PubMed  Google Scholar 

  34. V. Rajendran, A. König, K. S. Rabe, and C. M. Niemeyer (2010). Photocatalytic activity of protein-conjugated CdS nanoparticles. Small 6, 2035–2040. https://doi.org/10.1002/smll.201000690.

    Article  CAS  PubMed  Google Scholar 

  35. S. J. Park (2020). Protein-nanoparticle interaction: corona formation and conformational changes in proteins on nanoparticles. Int. J. Nanomed. 15, 5783–5802. https://doi.org/10.2147/IJN.S254808.

    Article  CAS  Google Scholar 

  36. I. R. Singh and S. Mitra (2020). Modulated protein binding ability of anti-diabetic drugs in presence of monodispersed gold nanoparticles and its inhibitory potential towards advanced glycated end (AGE) product formation. J. Fluoresc. 30, 193–204. https://doi.org/10.1007/s10895-019-02485-y.

    Article  CAS  PubMed  Google Scholar 

  37. S. Kumar, S. Mukherjee, R. Kr. Singh, S. Chatterjee, and A. K. Ghosh (2011). Structural and optical properties of sol–gel derived nanocrystalline Fe-doped ZnO. J. Appl. Phys. 110, 103508–103515. https://doi.org/10.1063/1.3658221.

    Article  CAS  Google Scholar 

  38. G. S. Kenath, P. Maity, Y. Kumar, H. Kumar, V. K. Gangwar, S. Chaterjee, S. Jit, A. K. Ghosh, and B. N. Pal (2017). Single quantum dot rectifying diode with tunable threshold voltage. J. Mater. Chem. C 5, 9792–9798. https://doi.org/10.1039/C7TC02537H.

    Article  CAS  Google Scholar 

  39. I. R. Singh, S. O. Yesylevskyy, and S. Mitra (2021). Dietary polyphenols inhibit plasma protein arabinosylation: biomolecular interaction of genistein and ellagic acid with serum albumins. Biophys. Chem. 277, 106651. https://doi.org/10.1016/j.bpc.2021.106651.

    Article  CAS  PubMed  Google Scholar 

  40. M. E. K. Wahba, N. El-Enany, and F. Belal (2015). Application of the Stern–Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations. Anal. Methods 7, 10445–10451. https://doi.org/10.1039/C3AY42093K.

    Article  CAS  Google Scholar 

  41. S. Lehrer (1971). Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10, 3254–3263. https://doi.org/10.1021/bi00793a015.

    Article  CAS  PubMed  Google Scholar 

  42. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications (Wiley-VCH Verlag GmBH, Weinheim, 2001).

    Book  Google Scholar 

  43. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer US, Boston, 2006).

    Book  Google Scholar 

  44. S. Chakraborty, P. Joshi, V. Shanker, Z. A. Ansari, S. P. Singh, and P. Chakrabarti (2011). Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27, 7722–7731. https://doi.org/10.1021/la200787t.

    Article  CAS  PubMed  Google Scholar 

  45. A. Sadat and I. J. Joye (2020). Peak fitting applied to Fourier transform infrared and Raman spectroscopic analysis of proteins. Appl. Sci. 10, 5318–5934. https://doi.org/10.3390/app10175918.

    Article  CAS  Google Scholar 

  46. K. V. Abrosimova, O. V. Shulenina, and S. V. Paston (2016). FTIR study of secondary structure of bovine serum albumin and ovalbumin. J. Phys.: Conf. Ser. 769, 012016–012021. https://doi.org/10.1088/1742-6596/769/1/012016.

    Article  CAS  Google Scholar 

  47. N. M. Basith, J. Vijaya, L. J. Kennedy, M. Bououdina, R. Shenbhagaraman, and R. Jayavel (2016). Influence of Fe-doping on the structural, morphological, optical, magnetic and antibacterial effect of ZnO nanostructures. J. Nanosci. Nanotechnol. 16, 1567–1577. https://doi.org/10.1166/jnn.2016.10756.

    Article  CAS  PubMed  Google Scholar 

  48. M. Arakha, M. Saleem, B. C. Mallick, and S. Jha (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 5, 9578. https://doi.org/10.1038/srep09578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Z. Emami-Karvani and P. Chehrazi (2011). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res. 5 (12), 1368–1373. https://doi.org/10.5897/AJMR10.159.

    Article  CAS  Google Scholar 

  50. A. Khalid, P. Ahmad, A. I. Alharthi, S. Muhammad, M. U. Khandaker, M. R. I. Faruque, et al. (2021). Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains. PLoS ONE 16 (5), e0251082. https://doi.org/10.1371/journal.pone.0251082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279 (1), 71–76. https://doi.org/10.3389/fphy.2021.641481.

    Article  CAS  PubMed  Google Scholar 

  52. D. Rutherford, J. Jíra, K. Kolářová, I. Matolínová, J. Mičová, Z. Remeš, and B. Rezek (2021). Growth inhibition of Gram-positive and Gram-negative bacteria by zinc oxide hedgehog particles. Int. J. Nanomed. 16, 3541–3554. https://doi.org/10.2147/IJN.S300428.

    Article  Google Scholar 

  53. S. V. Gudkov, D. E. Burmistrov, D. A. Serov, M. B. Rebezov, A. A. Semenova, and A. B. Lisitsym (2021). A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481.

    Article  Google Scholar 

  54. I. R. Singh and S. Mitra (2019). Interaction of chlorpropamide with serum albumin: effect on advanced glycated end (AGE) product fluorescence. Spectrochim. Acta A 206, 569–577. https://doi.org/10.1016/j.saa.2018.08.055.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

IRS and UC are recipients of research fellowship from NEHU. PM thanks DST INSPIRE program for providing PhD fellowship.

Funding

Partial financial support for this research was received from Dept. of Science & Technology, Govt. of India (Grant number—SR/FST/CSI-194/2008).

Author information

Authors and Affiliations

Authors

Contributions

IRS: Data curation, writing—original draft preparation; PM: Synthesis of nanoparticles, AKG: Software, validation; UC: antibacterial study; SRJ: Data analysis, writing; SM: Designing the experiments, analyzing the data, Writing- Reviewing and editing, funding arrangement.

Corresponding author

Correspondence to Sivaprasad Mitra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests associated with this manuscript.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors approve the submission of the manuscript in its current form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1572 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, I.R., Chettri, U., Maity, P. et al. Modulated Antimicrobial Activity and Drug-Protein Interaction Ability of Zinc Oxide and Cadmium Sulfide Nanoparticles: Effect of Doping with Few First-Row Transition Metals. J Clust Sci 34, 799–811 (2023). https://doi.org/10.1007/s10876-022-02257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02257-y

Keywords

Navigation