Skip to main content
Log in

Pyrimidine Derivative Schiff Base Ligand Stabilized Copper and Nickel Nanoparticles by Two Step Phase Transfer Method; in Vitro Anticancer, Antioxidant, Anti-Microbial and DNA Interactions

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Pyrimidine derivative Schiff base ligand (DPMC) stabilized metal nanoparticles of copper (DPMC-CuNPs) and nickel (DPMC-NiNPs) were synthesized by modified Brust-Schiffrin technique, which is a two-step phase transfer assisted synthesis. The prepared metal nanoparticles were confirmed by UV-Visible and Infrared spectroscopy. The size, surface morphology and the quality of the DPMC and its MNPs were analyzed by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) methods respectively. Electrochemical behavior of the DPMC-CuNPs and DPMC-NiNPs was analyzed by cyclic voltammetry method. DNA binding studies of the synthesized compounds with CT-DNA were examined by four different techniques such as UV-Visible and emission spectroscopy, cyclic voltametry and viscometric measurments. Thermal denaturation and sono-chemical denaturation studies of DNA with the DPMC, DPMC-CuNPs and DPMC-NiNPs results also suggest the synthesized compounds have good DNA binding ability. Various antioxidant scavenging studies results shows that DPMC and its copper and nickel nanoparticles have significant antioxidant activity. Antimicrobial studies of the DPMC and its MNPs were studied by Agar-Agar well diffusion method. Anticancer studies of the DPMC and its MNPs show that the DPMC-CuNPs and DPMC-NiNPs have significant anticancer activity with least toxicity than the standard drug cis-platin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433. https://doi.org/10.1016/j.tibtech.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  2. Baptista P, Pereira P, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2007) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391(3):943–950. https://doi.org/10.1007/s00216-007-1768-z

    Article  CAS  PubMed  Google Scholar 

  3. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine Future 2(5):681–693. https://doi.org/10.2217/17435889.2.5.681

    Article  CAS  Google Scholar 

  4. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60(8):977–985. https://doi.org/10.1211/jpp.60.8.0005

    Article  CAS  PubMed  Google Scholar 

  5. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309–N315. https://doi.org/10.1088/0031-9155/49/18/n03

    Article  CAS  PubMed  Google Scholar 

  6. Han G, Ghosh P, Rotello VM (2007) Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol 620:48–56. https://doi.org/10.1007/978-0-387-76713-0_4

    Article  PubMed  Google Scholar 

  7. Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9(23):12944–12967. https://doi.org/10.1039/c8ra10483b

    Article  CAS  Google Scholar 

  8. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK (2019) A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun 55(49):6964–6996. https://doi.org/10.1039/c9cc01741k

    Article  CAS  Google Scholar 

  9. Erbs JJ, Gilbert B, Penn RL (2008) Influence of size on reductive dissolution of six-line Ferrihydrite. J Phys Chem C 112(32):12127–12133. https://doi.org/10.1021/jp801601h

    Article  CAS  Google Scholar 

  10. Hinman JG, Eller JR, Lin W, Li J, Li J, Murphy CJ (2017) Oxidation state of capping agent affects spatial reactivity on gold nanorods. J Am Chem Soc 139(29):9851–9854. https://doi.org/10.1021/jacs.7b06391

    Article  CAS  PubMed  Google Scholar 

  11. Sedighi A, Montazer M (2016) Tunable shaped N-doped CuO nanoparticles on cotton fabric through processing conditions: synthesis, antibacterial behavior and mechanical properties. Cellulose 23(3):2229–2243. https://doi.org/10.1007/s10570-016-0892-3

    Article  CAS  Google Scholar 

  12. Makhdoomi H, Moghadam HM, Zabihi O (2013) Effect of different conditions on the size and quality of titanium dioxide nanoparticles synthesized by a reflux process. Res Chem Intermed 41(3):1777–1788. https://doi.org/10.1007/s11164-013-1311-0

    Article  CAS  Google Scholar 

  13. Wang P, Li C, Gong H, Jiang X, Wang H, Li K (2010) Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol 203(2):315–321. https://doi.org/10.1016/j.powtec.2010.05.023

    Article  CAS  Google Scholar 

  14. Liu H, Zhang H, Wang J, Wei J (2017) Effect of temperature on the size of biosynthesized silver nanoparticle: deep insight into microscopic kinetics analysis. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.09.004

    Article  CAS  Google Scholar 

  15. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. https://doi.org/10.1021/j100214a025

    Article  CAS  Google Scholar 

  16. Longenberger L, Mills G (1995) Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers. J Phys Chem 99(2):475–478. https://doi.org/10.1021/j100002a001

    Article  CAS  Google Scholar 

  17. Bunge SD, Boyle TJ, Headley TJ (2003) Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 3(7):901–905. https://doi.org/10.1021/nl034200v

    Article  CAS  Google Scholar 

  18. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414. https://doi.org/10.1007/s11051-004-6575-2

    Article  CAS  Google Scholar 

  19. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of Thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 0, 801–802. https://doi.org/10.1039/c39940000801

    Article  CAS  Google Scholar 

  20. Rossi LM, Fiorio JL, Garcia MAS, Ferraz CP (2018) The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans 47(17):5889–5915. https://doi.org/10.1039/c7dt04728b

    Article  CAS  PubMed  Google Scholar 

  21. Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22(13):5882–5887. https://doi.org/10.1021/la060045z

    Article  CAS  PubMed  Google Scholar 

  22. Battocchio C, Meneghini C, Fratoddi I, Venditti I, Russo MV, Aquilanti G, Bondino CMF, Rossi RMM, Giovanni SM (2012) Silver nanoparticles stabilized with Thiols: a close look at the local chemistry and chemical structure. J Phys Chem C 116(36):19571–19578. https://doi.org/10.1021/jp305748a

    Article  CAS  Google Scholar 

  23. Kretschmer F, Mansfeld U, Hoeppener S, Hager MD, Schubert US (2014) Tunable synthesis of poly(ethylene imine)–gold nanoparticle clusters. Chem Commun 50(1):88–90. https://doi.org/10.1039/c3cc45090b

    Article  CAS  Google Scholar 

  24. Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, Chen X (2007) One-pot synthesis of polyacrylamide-gold nanocomposite. Mater Chem Phys 106(2–3):412–415. https://doi.org/10.1016/j.matchemphys.2007.06.021

    Article  CAS  Google Scholar 

  25. Nath S, Jana S, Pradhan M, Pal T (2010) Ligand-stabilized metal nanoparticles in organic solvent. J Colloid Interface Sci 341(2):333–352. https://doi.org/10.1016/j.jcis.2009.09.049

    Article  CAS  PubMed  Google Scholar 

  26. Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B (2013) Molecular recognition by gold, silver and copper nanoparticles. World J Biol Chem 4(3):35–63. https://doi.org/10.4331/wjbc.v4.i3.35

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sankarganesh M, Adwin Jose P, Dhaveethu Raja J, Kesavan MP, Vadivel M, Rajesh J, Jeyamurugan R, Senthil Kumar R, Karthikeyan S (2017) New pyrimidine based ligand capped gold and platinum nano particles: synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities. J Photochem Photobiol B Biol 176:44–53. https://doi.org/10.1016/j.jphotobiol.2017.09.013

    Article  CAS  Google Scholar 

  28. Adwin Jose P, Dhaveethu Raja J, Sankarganesh M, Rajesh J (2018) Evaluation of antioxidant, DNA targeting, antimicrobial and cytotoxic studies of imine capped copper and nickel nanoparticles. J Photochem Photobiol B Biol 178:143–151. https://doi.org/10.1016/j.jphotobiol.2017.11.005

    Article  CAS  Google Scholar 

  29. Raman N, Dhaveethu Raja J, Sakthivel A (2007) Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. J Chem Sci 119(4):303–310. https://doi.org/10.1007/s12039-007-0041-5

    Article  CAS  Google Scholar 

  30. Rajalakshmi S, Weyhermüller T, Dinesh M, Nair BU (2012) Copper(II) complexes of terpyridine derivatives: a footstep towards development of antiproliferative agent for breast cancer. J Inorg Biochem 117:48–59. https://doi.org/10.1016/j.jinorgbio.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  31. Sankarganesh M, Dhaveethu Raja J, Adwin Jose PR, Vinoth Kumar GG, Rajesh J, Rajasekaran R (2018) Spectroscopic, computational, antimicrobial, dna interaction, in vitro anticancer and molecular docking properties of biochemically active cu(II) and Zn(II) complexes of pyrimidine-ligand. J Fluoresc 28(4):975–985. https://doi.org/10.1007/s10895-018-2261-0

    Article  CAS  PubMed  Google Scholar 

  32. Serpen A, Capuano E, Fogliano V, Gokmen V (2007) A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem 55(19):7676–7681. https://doi.org/10.1021/jf071291z

    Article  CAS  PubMed  Google Scholar 

  33. Patel A, Patel A, Patel A, Patel N (2010) Determination of polyphenols and free radical scavenging activity of Tephrosia purpurealinn leaves (Leguminosae). Pharm Res 2(3):152–158. https://doi.org/10.4103/0974-8490.65509

    Article  CAS  Google Scholar 

  34. Nishikimi M, Appaji Rao N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854. https://doi.org/10.1016/s0006-291x(72)80218-3

    Article  CAS  PubMed  Google Scholar 

  35. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, PietersL VAJ, Berghe DV (1978) Structure−activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61(1):71–76. https://doi.org/10.1021/np970237h

    Article  Google Scholar 

  36. Sankarganesh M, Dhaveethu Raja J, Sakthikumar K, Solomon RV, Rajesh J, Athimoolam S, Vijayakumar V (2018) New bio-sensitive and biologically active single crystal of pyrimidine scaffold ligand and its gold and platinum complexes: DFT, antimicrobial, antioxidant, DNA interaction, molecular docking with DNA/BSA and anticancer studies. Bioorg Chem 81:144–156. https://doi.org/10.1016/j.bioorg.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  37. Kou Y, Tian J, Li D, Gu W, Liu X, Yan S, Liao D, Chemg P (2009) Synthesis, structure, magnetic properties and DNA cleavage of binuclear cu(II) Schiff-base complexes. Dalton Trans 13:2374–2382. https://doi.org/10.1039/b819052f

    Article  CAS  Google Scholar 

  38. Cohen G, Eisenberg H (1969) Viscosity and sedimentation study of sonicated DNA-proflavine complexes. Biopolymers 8(1):45–55. https://doi.org/10.1002/bip.1969.360080105

    Article  CAS  Google Scholar 

  39. Sakthikumar K, Dhaveethu Raja J, Vijay Solomon R, Sankarganesh M (2018) Density functional theory molecular modelling, DNA interactions, antioxidant, antimicrobial, anticancer and biothermodynamic studies of bioactive water soluble mixed ligand complexes. J Biomol Struct Dyn 37(10):2498–2514. https://doi.org/10.1080/07391102.2018.1492970

    Article  CAS  PubMed  Google Scholar 

  40. Raman N, Sudharsan S (2011) Phase transfer synthesis of N,N′(1,2-phenylene)bis-hippuricamide tethered metal based functionalized nanoparticles: A study on some novel microbial targeting peptide-mimic nanoparticles. Appl Surf Sci 257(24):10659–10666. https://doi.org/10.1016/j.apsusc.2011.07.070

    Article  CAS  Google Scholar 

  41. Helm I, Jalukse L, Leito I (2012) A highly accurate method for determination of dissolved oxygen: gravimetric Winkler method. Anal Chim Acta 741:21–31. https://doi.org/10.1016/j.aca.2012.06.049

    Article  CAS  PubMed  Google Scholar 

  42. Silverstein RM, Bassler GC, Morrill TC, Spectrometric identification of organic compounds, 4th, New York, NY, USA, 1981

  43. Lu M, Yang S, Ho Y-P, Grigsby CL, Leong KW, Huang TJ (2014) Shape-Controlled Synthesis of Hybrid Nanomaterials via Three-Dimensional Hydrodynamic Focusing. ACS Nano 8(10):10026–10034

    Article  CAS  Google Scholar 

  44. Hong SY, Popovitz-Biro R, Prior Y, Tenne R (2003) Synthesis of SnS2/SnS Fullerene-like Nanoparticles: A Superlattice with Polyhedral Shape. J Am Chem Soc 125(34):10470–10474

    Article  CAS  Google Scholar 

  45. Sankarganesh M, Raja JD, Revathi N, Solomon RV, Kumar RS (2019) Gold(III) complex from pyrimidine and morpholine analogue Schiff base ligand: synthesis, characterization, DFT, TDDFT, catalytic, anticancer, molecular modeling with DNA and BSA and DNA binding studies. J Mol Liq 294:111655. https://doi.org/10.1016/j.molliq.2019.111655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere and heartfelt thanks to Managing Board, Principal, Head and staff members, The American College, Madurai for providing the research facilities and their constant encouragements. Authors acknowledge the Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India and also authors acknowledge the Managing Board, Dean, Principal, Head and staff members of Department of Chemistry, Mohamed Sathak Engineering College, Kilakarai for providing research facilities. The authors express their sincere thanks to Department of Scienceand Technology (DST)-Science and Engineering Research Board (SERB Ref. No.: SR/FT/CS-117/2011 dated 29.06.2012) Government of India, New Delhi for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaveethu Raja J..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Solid air stable metal nano particles of copper and nickel were prepared.

• The nano particles was stabilized by pyrimidine derivative Schiff base ligand

• Stabilized nanoparticles were readily soluble in most of the solvents.

• Synthesized metal nanoparticles have good antibacterial activity.

• Both metal nanoparticles have least toxicity than cis-platin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P., A., M., S., J., D. et al. Pyrimidine Derivative Schiff Base Ligand Stabilized Copper and Nickel Nanoparticles by Two Step Phase Transfer Method; in Vitro Anticancer, Antioxidant, Anti-Microbial and DNA Interactions. J Fluoresc 30, 471–482 (2020). https://doi.org/10.1007/s10895-020-02510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02510-5

Keywords

Navigation