Skip to main content
Log in

Immobilization of Gold–Aryl Nanoparticles Over Graphene Oxide Platforms: Experimental and Molecular Dynamics Calculations Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) was decorated with gold–aryl (Au–C) nanoparticles of AuNPs–COOH by sodium borohydride reduction of aryldiazonium tetrachloroaurate(III) salt at room temperature in aqueous solutions. Morphology of AuNPs–COOH/GO nanocomposite (NC) was probed using atomic force microscopy (AFM) and transmission electron microscopy (TEM), showing NC surface roughness and wrinkling. X-ray photoelectron spectroscopy (XPS) results suggest the clear reductive reaction of tetrachloroaurate anion into metallic gold in AuNPs–COOH/GO along with detailed interpretations of the nature of the functional groups. Brunauer–Emmett–Teller measurements supported GO anchoring by AuNPs modified with COOH; surface area dropped significantly. Molecular dynamics calculations endowed support of favorable wrinkling at the edges and carboxyl intercalation to GO surface of types π–π, hydrogen bonding, and hydrophobic interactions. Solvent accessible surface area calculations of GO showed a decrease in total surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.

Similar content being viewed by others

References

  1. X. Li, F. Chen, C. Lian, et al. (2016). J. Clust. Sci. 27, 1877–1892.

    Article  CAS  Google Scholar 

  2. C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min (2013). Acc. Chem. Res. 46, 2211–2224.

    Article  CAS  PubMed  Google Scholar 

  3. T. Zhou, Y. Cheng, H. Zhang, et al. (2019). J. Clust. Sci. 30, 985–994.

    Article  CAS  Google Scholar 

  4. Y. Luo, F. Y. Kong, C. Li, J. J. Shi, W. X. Lv, and W. Wang (2016). Sens. Actuators 234, 625–632.

    Article  CAS  Google Scholar 

  5. W. L. Fu, S. J. Zhen, and C. Z. Huang (2013). Analyst 138, 3075.

    Article  CAS  PubMed  Google Scholar 

  6. D. Hernández-Sánchez, G. Villabona-Leal, I. Saucedo-Orozco, V. Bracamonte, E. Pérez, C. Bittencourt, et al. (2018). Phys. Chem. Chem. Phys. 20, 1685–1692.

    Article  PubMed  Google Scholar 

  7. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace (2008). Nat. Nanotechnol. 3, 101–105.

    Article  CAS  PubMed  Google Scholar 

  8. S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng (2010). Carbon 48, 4466–4474.

    Article  CAS  Google Scholar 

  9. S. H. Jiang, J. Ding, R. H. Wang, F. Y. Chen, J. Sun, Y. X. Deng, and X. L. Li, Rare Met. (2021) 1–11.

  10. Z. H. Duan, Q. N. Zhao, C. Z. Li, S. Wang, Y. D. Jiang, Y. J. Zhang, B. H. Liu, and H. L. Tai (2021). Rare Met. 40, 1762–1767.

    Article  CAS  Google Scholar 

  11. M. Quintana, E. Vazquez, and M. Prato (2012). Acc. Chem. Res. 46, 138–148.

    Article  PubMed  Google Scholar 

  12. N. Bugárová, Z. Špitálsky, M. Mičušík, M. Bodík, P. Šiffalovič, M. Koneracká, et al. (2019). Cancers 11, 753. https://doi.org/10.3390/cancers11060753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. H. He and C. Gao (2011). Sci. China Chem. 54, 397–404.

    Article  CAS  Google Scholar 

  14. H. Yang, J. Jiang, W. Zhou, L. Lai, L. Xi, Y. Lam, et al. (2011). Nanoscale Res. Lett. 6, 531.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Y. Tao, A. Dandapat, L. Chen, Y. Huang, Y. Sasson, Z. Lin, et al. (2016). Langmuir 32, 8557–8564.

    Article  CAS  PubMed  Google Scholar 

  16. S. He, K. K. Liu, S. Su, J. Yan, X. Mao, D. Wang, et al. (2012). Anal. Chem. 84, 4622–4627.

    Article  CAS  PubMed  Google Scholar 

  17. N. T. Khoa, S. W. Kim, D. H. Yoo, E. J. Kim, and S. H. Hahn (2014). Appl. Catal. A 469, 159–164.

    Article  CAS  Google Scholar 

  18. T. A. Pham, B. C. Choi, K. T. Lim, and Y. T. Jeong (2011). Appl. Surf. Sci. 257, 3350–3357.

    Article  CAS  Google Scholar 

  19. A. A. L. Ahmad, S. Panicker, M. M. Chehimi, M. Monge, J. M. Lopez-De-Luzuriaga, A. A. Mohamed, et al. (2019). Catal. Sci. Technol. 9, 6059–6071.

    Article  CAS  Google Scholar 

  20. W. S. Hummers and R. E. Offeman (1958). J. Am. Chem. Soc. 80, 1339–1339.

    Article  CAS  Google Scholar 

  21. M. J. Abraham, M. D. Van der Spoel, B. Lindahl, B. Hess and the GROMACS development team, GROMACS User Manual version (2019) 4, http://www.gromacs.org.

  22. N. Schmid, A. P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A. E. Mark, et al. (2011). Eur. Biophys. J. 40, 843–856.

    Article  CAS  PubMed  Google Scholar 

  23. A. Lerf, H. He, M. Forster, and J. Klinowski (1998). J. Phys. Chem. B 102, 4477–4482.

    Article  CAS  Google Scholar 

  24. M. Stroet, B. Caron, K. M. Visscher, D. P. Geerke, A. K. Malde, and A. E. Mark (2018). J. Chem. Theory Comput. 14, 5834–5845.

    Article  CAS  PubMed  Google Scholar 

  25. H. J. C. Berendsen, J. P. M. Postma, W. F. V. Gunsteren, and J. Hermans (1981) The Jerusalem Symposia on Quantum Chemistry and Biochemistry Intermolecular Forces, 331–342.

  26. T. Darden, D. York, and L. Pedersen (1993). J. Chem. Phys. 98, 10089–10092.

    Article  CAS  Google Scholar 

  27. S. Link and M. A. El-Sayed (1999). J. Phys. Chem. B 103, 4212–4217.

    Article  CAS  Google Scholar 

  28. L. Laurentius, S. R. Stoyanov, S. Gusarov, A. Kovalenko, R. Du, G. P. Lopinski, et al. (2011). ACS Nano 5, 4219–4227.

    Article  CAS  PubMed  Google Scholar 

  29. S. Almheiri, A. A. L. Ahmad, B. L. Droumaguet, R. Pires, A. A. Mohamed, and M. M. Chehimi (2019). Langmuir 36, 74–83.

    Article  PubMed  Google Scholar 

  30. http://sites.cardiff.ac.uk/xpsaccess/reference/gold/Last. Accessed 9 Nov 2020

  31. M. Davies, High resolution XPS of organic polymers: The Scienta ESCA300 database G. Beamson and D. Briggs John Wiley, Chichester, UK 1992, Biomaterials 15 (1994) 318–318.

  32. A. Saad, M. Abderrabba, and M. M. Chehimi (2016). Surf. Interface Anal. 49, 340–344.

    Article  Google Scholar 

  33. W. M. Skinner, C. A. Prestidge, and R. S. C. Smart (1996). Surf. Interface Anal. 24, 620–626.

    Article  CAS  Google Scholar 

  34. M. M. Chehimi, Aryl Diazonium Salts: New Coupling Agents in Polymer and Surface Science (Wiley-VCH, Weinheim, 2012).

    Book  Google Scholar 

  35. A. Mesnage, X. Lefèvre, P. Jégou, G. Deniau, and S. Palacin (2012). Langmuir 28, 11767–11778.

    Article  CAS  PubMed  Google Scholar 

  36. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. R. Reinoso, J. Rouquerol, et al. (2015). Pure Appl. Chem. 87, 1051–1069.

    Article  CAS  Google Scholar 

  37. K. W. Song, M. H. Park, T. H. Kim, S. H. Lim, and C. W. Yang (2014). J. Nanosci. Nanotechnol. 14, 8766–8770.

    Article  CAS  PubMed  Google Scholar 

  38. H. Tang, Y. Zhao, S. Shan, X. Yang, D. Liu, F. Cui, et al. (2018). Environ. Sci. Technol. 52, 7689–7697.

    Article  CAS  PubMed  Google Scholar 

  39. W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, et al. (2017). J. Am. Chem. Soc. 139, 8846–8854.

    Article  CAS  PubMed  Google Scholar 

  40. H. Tang, Y. Zhao, S. Shan, X. Yang, D. Liu, F. Cui, et al. (2018). Environ. Sci. Nano. 5, 2357–2367.

    CAS  Google Scholar 

Download references

Acknowledgements

MO acknowledges VEGA 02/0010/18 (Slovakia) for financial support. AAM acknowledges the University of Sharjah support of SEED grant (VC-GRC-SR-83-2015), competitive grants (160-2142-029-P and 150-2142-017-P), Organometallic Research Group grant (RISE-046-2016), and Functionalized Nanomaterials Synthesis Lab grant (151-0039). CH acknowledges the support of the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A4A1032746) and (No. 2021R1A2C1093183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Mohamed.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Research Involving Human Participants and/or Animals

This research does not involve human participants and/or animals.

Informed Consent

There is no need for informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parambath, J.B.M., Arooj, M., Omastova, M. et al. Immobilization of Gold–Aryl Nanoparticles Over Graphene Oxide Platforms: Experimental and Molecular Dynamics Calculations Study. J Clust Sci 34, 577–586 (2023). https://doi.org/10.1007/s10876-022-02247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02247-0

Keywords

Navigation