Skip to main content
Log in

Graphene–Metal Nanoparticle Hybrids: Electronic Interaction Between Graphene and Nanoparticles

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present investigation, graphene (G) and graphene decorated with Ag (Ag-G), Au (Au-G) metal nanoparticles as well as AuAg alloy (AuAg-G) nanoparticles (NPs) have been successfully synthesized via solution chemical route. The specimens have been characterized by using XRD, Raman, UV–Vis spectroscopy and TEM. TEM study confirms the formation of few-layered graphene sheets decorated with metal and alloy NPs. The relative change in the positions of D and G bands in Raman spectra of Ag-G, Au-G and AuAg-G as compared to graphene reveals a significant electronic interaction between graphene and metal or alloy NPs. A better electronic interaction between AuAg alloy NPs and graphene as compared to that of pure metal NPs has been shown by an enhancement in the intensities of G and D bands in Raman spectrum of AuAg-G as compared to those of Ag-G and Au-G. UV–Vis spectroscopic analysis also indicates, a larger blue shift in the absorption peak of the graphene in AuAg-G than that of metal decorated graphene, suggesting a better interaction between graphene and alloy NPs. These results indicate that alloy NPs can tune the electronic structure of graphene better than metal NPs. Such changes in electronic interaction will lead to modification of the electronic behaviour of graphene, making these materials suitable for many electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Geim A K, and Novoselov K S, Nat Mat 6 (2007) 183.

    Article  Google Scholar 

  2. Huang X, Yin X, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, and Zhang H, Small 7 (2011) 1876.

    Article  Google Scholar 

  3. Lee C, Wei X, Kysar J W, and Hone J, Science 321 (2008) 385.

    Article  Google Scholar 

  4. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, and Lau C N, Nano Lett 8 (2008) 902.

    Article  Google Scholar 

  5. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, and Stormer H L, Solid State Commun 146 (2008) 351.

    Article  Google Scholar 

  6. Stoller M D, Park S, Zhu Y, An J, and Ruoff R S, Nano Lett 8 (2008) 3498.

    Article  Google Scholar 

  7. Yan J, Wei T, Qiao W, Shao B, Zhoa Q, Zhang L, and Fan Z, Electrochimica Acta 55 (2010) 6973.

    Article  Google Scholar 

  8. Hu H, Wang X, Liu F, Wang J, and Xu C, Synthetic Metals 161 (2011) 404.

    Article  Google Scholar 

  9. Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H, Evmenenko G, Nguyen S T, and Ruoff R S, Nature 448 (2007) 457.

    Article  Google Scholar 

  10. Park S, and Ruoff R S, Nature Nanotechnol 4 (2009) 217.

    Article  Google Scholar 

  11. Dreyer D R, Park S, Bielawski C W, and Ruoff R S, Chem Soc Rev 39 (2010) 228.

    Article  Google Scholar 

  12. Lu X, Yu M, Huang H, and Ruoff R S, Nanotechnology 10 (1999) 269.

    Article  Google Scholar 

  13. Eizenberg M, and Blakely J M, Surf Sci 82 (1970) 228.

    Article  Google Scholar 

  14. Pei S, and Cheng H M, Carbon 50 (2012) 3210.

    Article  Google Scholar 

  15. Sahu S R, Devi M M, Mukherjee P, Sen P, and Biswas K, Nano Mat J 2013 (2013) 1.

    Article  Google Scholar 

  16. Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, and Kim K S, Chem Rev 112 (2012) 6156.

    Article  Google Scholar 

  17. Subrahmanyam K S, Manna A K, Pati S K, and Rao C N R, Chem Phys Lett 497 (2010) 70.

    Article  Google Scholar 

  18. Xu Z, Gao H, and Guoxin H, Carbon 49 (2011) 4731.

    Article  Google Scholar 

  19. Tien H W, Huang Y L, Yang S Y, Wang J Y, and Ma C C M, Carbon 49 (2011) 1550.

    Article  Google Scholar 

  20. Yuana W, Gua Y, and Li L, Appl Surf Sci 261 (2012) 753.

    Article  Google Scholar 

  21. Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach EA, Piner R D, Nguyen S T, and Ruoff R S, Nature 442 (2006) 282.

    Article  Google Scholar 

  22. Zhao H, Fu H, Zhao T, Wanga L, and Tan T, Colloid Interface Sci J 375 (2012) 30.

    Article  Google Scholar 

  23. Tien H W, Huang Y L, Yang S Y, Wang J Y, and Ma C C M, Carbon 49 (2011) 1550.

    Article  Google Scholar 

  24. Mao A, Zhang D, Jin X, Gu X, Wei X, Yang G, and Liu X, Phys Chem Solids J 73 (2012) 982.

    Article  Google Scholar 

  25. Hummers W S, and Offeman R, Am Chem Soc J 80 (1958) 1339.

    Article  Google Scholar 

  26. Farrari A C, Solid State Commun 43 (2007) 47.

    Article  Google Scholar 

  27. Lightcap I V, Kosel T H, and Kamat P V, Nano Lett 10 (2010) 577.

    Article  Google Scholar 

Download references

Acknowledgments

The author is thankful to IIT Kanpur for providing the facilities TEM, XRD, Raman and UV–Vis spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishanu Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manolata Devi, M., Sahu, S.R., Mukherjee, P. et al. Graphene–Metal Nanoparticle Hybrids: Electronic Interaction Between Graphene and Nanoparticles. Trans Indian Inst Met 69, 839–844 (2016). https://doi.org/10.1007/s12666-015-0566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0566-0

Keywords

Navigation