Skip to main content
Log in

Construction of UiO-NH2@TiC Schottky Junction and Their Effectively Photocatalytic and Antibacterial Performance

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The hydrophilic Ti3C2, typical MXenes containing surface functional groups, possess excellent conductivity, was mainly applied in supercapacitors. However, it had not obvious photocatalytic and antibacterial activity because of high electron hole-pair recombination rate and concentration dependence. In this work, a novel MXenes-based Schottky junction (UiO-NH2@TiC) was fabricated by a simple solvothermal method using Ti3C2 as the conductive carrier and UiO66-NH2 as positively charged nano-MOFs (metal organic frameworks). After verifying the synthesis of UiO-NH2@TiC by SEM (scanning electron microscopy), EDS (energy dispersive spectrometer), XRD (powder X-ray diffraction), and FT-IR (Fourier transform infrared spectroscopy), its photochemical properties were also measured. Then, the photocatalytic antibacterial activity and the photodegradation behavior were investigated. The results indicated that UiO-NH2@TiC Schottky junction could not only remove the remaining antibiotics in wastewater (91%), but also effectively inhibited the growth of bacteria, and the inhibition rate of E. coli (Escherichia coli) and S. aureus (Staphylococcus aureus) more than 95% under visible light irradiation. In summary, it is an effective strategy for constructing functional Schottky junction. What’s more, the obtained Schottky junction has great potential in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. H. Luo, X. Q. Yin, P. F. Tan, Z. P. Gu, Z. M. Liu, and L. Tan (2021). J. Mater. Chem. B. 9, 2802–2816. https://doi.org/10.1039/D1TB00109D.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Liu, J. J. Kong, J. L. Yuan, W. Zhao, X. Zhu, C. Sun, and J. M. Xie (2018). Chem. Eng. J. 331, 242–254. https://doi.org/10.1016/j.cej.2017.08.114.

    Article  CAS  Google Scholar 

  3. X. M. Li, B. Wang, T. Y. Liang, R. M. Wang, P. F. Song, and Y. F. He (2020). Nanoscale. 12, 21940–21951. https://doi.org/10.1016/j.cej.2017.08.114.

    Article  CAS  PubMed  Google Scholar 

  4. Z. Q. Zhao, X. L. Ma, R. Chen, H. Xue, J. H. Lei, H. Du, Z. X. Zhang, and H. Chen (2020). ACS Appl. Mater. Inter. 12, 19268–19276. https://doi.org/10.1021/acsami.0c00791.

    Article  CAS  Google Scholar 

  5. P. Ning, F. Zhang, L. J. Wang, Y. Zhou, Y. J. Wang, Y. Y. Wu, and T. Fu (2020). Mater. Chem. Phys. 243, 122646. https://doi.org/10.1016/j.matchemphys.2020.122646.

    Article  CAS  Google Scholar 

  6. J. M. Zhang, Y. H. Sun, Y. Zhao, Y. L. Liu, X. H. Yao, B. Tang, and R. Q. Hang (2019). Rare Met. 38, 552–560. https://doi.org/10.1039/D0NR05462C.

    Article  CAS  Google Scholar 

  7. T. Yang, S. S. Oliver, Y. Chen, C. Boyer, and R. Chandrawati (2019). J. Colloid Interf. Sci. 546, 43–52. https://doi.org/10.1016/j.jcis.2019.03.051.

    Article  CAS  Google Scholar 

  8. Z. L. Zhou, B. Li, X. M. Liu, Z. Y. Li, S. L. Zhu, Y. Q. Liang, Z. D. Cui, and S. L. Wu (2021). ACS Appl. Bio Mater. 4 (5), 3909–3936. https://doi.org/10.1021/acsabm.0c01335.

    Article  CAS  PubMed  Google Scholar 

  9. T. T. Lu, X. X. Xu, X. X. Liu, and T. Sun (2017). Chem. Eng. J. 308, 151–159. https://doi.org/10.1016/j.cej.2016.09.009.

    Article  CAS  Google Scholar 

  10. E. Yeşilova, B. Osman, A. Kara, and E. T. Özer (2018). Sep. Purif. Technol. 200, 155–163. https://doi.org/10.1016/j.seppur.2018.02.002.

    Article  CAS  Google Scholar 

  11. N. Oturan, J. Wu, H. Zhang, V. K. Sharma, and M. A. Oturan (2013). Appl. Catal. B-Environ. 140, 92–97. https://doi.org/10.1016/j.apcatb.2013.03.035.

    Article  CAS  Google Scholar 

  12. Z. Z. Liang, R. C. Shen, Y. H. Ng, P. Zhang, Q. J. Xiang, and X. Li (2020). A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J. Mater. Sci. Technol. 89–121. https://doi.org/10.1016/j.jmst.2020.04.032.

    Article  Google Scholar 

  13. M. K. Han, C. E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C. M. Koo, G. Friedman, and Y. Gogotsi (2020). ACS Nano 14, 5008–5016. https://doi.org/10.1021/acsnano.0c01312.

    Article  CAS  PubMed  Google Scholar 

  14. A. Szuplewska, D. Kulpińska, A. Dybko, M. Chudy, A. M. Jastrzębska, A. Olszyna, and Z. Brzózka (2020). Trends Biotechnol. 38 (3), 264–279. https://doi.org/10.1016/j.tibtech.2019.09.001.

    Article  CAS  PubMed  Google Scholar 

  15. H. Lin, Y. M. Wang, S. S. Gao, Y. Chen, and J. L. Shi (2018). Adv. Mater. 30, 1703284–1703295. https://doi.org/10.1002/adma.201703284.

    Article  CAS  Google Scholar 

  16. I. Ihsanullah (2020). Chem. Eng. J. 388, 124340–124357. https://doi.org/10.1016/j.cej.20.24340.

    Article  CAS  Google Scholar 

  17. L. Ding, Y. L. Wei, L. B. Li, T. Zhang, H. H. Wang, J. Xue, L. X. Ding, S. Q. Wang, J. Caro, and Y. Gogotsi (2018). Nat. Commun. 9, 155–162. https://doi.org/10.1038/s41467-017-02529-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D. Zhao, Z. Chen, W. J. Yang, S. J. Liu, X. Zhang, Y. Yu, W. C. Cheng, L. R. Zheng, F. Q. Ren, G. B. Ying, X. Cao, D. S. Wang, Q. Peng, G. X. Wang, and C. Chen (2019). J. Am. Chem. Soc. 141, 4086–4093. https://doi.org/10.1021/jacs.8b13579.

    Article  CAS  PubMed  Google Scholar 

  19. R. Ran, G. P. Gao, F. T. Li, T. Y. Ma, A. J. Du, and S. Z. Qiao (2017). Nat. Commun. 8, 13907–13917. https://doi.org/10.1038/ncomms13907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Z. M. Jiang, Q. Chen, Q. Q. Zheng, R. C. Shen, P. Zhang, and X. Li (2021). Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. Chim. Sin. 6, 2010059. http://www.whxb.pku.edu.cn/EN/Y2021/V37/I6/2010059.

  21. T. M. Su, Z. D. Hood, M. Naguib, L. Bai, S. Luo, C. M. Rouleau, I. N. Ivanov, H. B. Ji, Z. Z. Qin, and Z. L. Wu (2019). Nanoscale 11, 8138–8149. https://pubs.rsc.org/lv/content/articlehtml/2019/nr/c9nr00168a.

  22. K. Rasool, M. Helal, A. Ali, C. E. Ren, Y. Gogotsi, and K. A. Mahmoud (2016). ACS Nano. 10, 3674–3684. https://doi.org/10.1021/acsnano.6b00181.

    Article  PubMed  Google Scholar 

  23. S. Tie, Y. Yang, C. F. Yu, H. Chen, Y. M. Liu, S. Y. Dong, J. Y. Sun, and J. H. Sun (2019). J. Colloid Interf. Sci. 545, 63–70. https://doi.org/10.1016/j.jcis.2019.03.014.

    Article  CAS  Google Scholar 

  24. Y. P. Zhang, P. Y. Cao, X. H. Zhu, B. Z. Li, Y. F. He, P. F. Song, and R. M. Wang (2021). J. Envion. Manage. 299, 13636. https://doi.org/10.1016/j.jenvman.2021.113636.

    Article  Google Scholar 

  25. Q. Zhao, X. Q. Xie, C. E. Ren, T. Makaryan, B. Anasori, G. X. Wang, and Y. Gogotsi (2017). Adv. Mater. 29, 1702410–1702417. https://doi.org/10.1002/adma.201702410.

    Article  CAS  Google Scholar 

  26. X. Tang, D. Zhou, P. Li, X. Guo, C. Y. Wang, F. Y. Kang, B. H. Li, and G. X. Wang (2019). High-performance quasi-solid-state MXene-based Li-I batteries. ACS Central Sci. 5, 365–373. https://doi.org/10.1021/acscentsci.8b00921.

    Article  CAS  Google Scholar 

  27. P. Tian, X. He, L. Zhao, W. X. Li, W. Fang, H. Chen, F. Q. Zhang, Z. H. Huang, and H. L. Wang (2019). Int. J. Hydrogen Energy 44, 788–800. https://doi.org/10.1016/j.ijhydene.2018.11.016.

    Article  CAS  Google Scholar 

  28. J. Y. Hou, Y. Luan, J. Tang, A. M. Wensley, M. Yang, and Y. F. Lu (2015). J. Mol. Catal. A-Chem. 407, 53–59. https://doi.org/10.1016/j.molcata.2015.06.018.

    Article  CAS  Google Scholar 

  29. Z. B. Yang, L. Zhu, and L. Chen (2019). J. Colloid Interf. Sci. 539, 76–86. https://doi.org/10.1016/j.jcis.2018.11.064.

    Article  CAS  Google Scholar 

  30. L. B. Wang, H. Zhang, B. Wang, C. J. Shen, C. X. Zhang, Q. K. Hu, A. G. Zhou, and B. Z. Liu (2016). Electron. Mater. Lett. 12, 702–710. https://doi.org/10.1007/s13391-016-6088-z.

    Article  CAS  Google Scholar 

  31. Y. Y. Wen, T. E. Rufford, X. Z. Chen, N. Li, M. Q. Lyu, L. M. Dai, and L. Z. Wang (2017). Nano Energy. 38, 368–376. https://doi.org/10.1016/j.nanoen.2017.06.009.

    Article  CAS  Google Scholar 

  32. Y. Wu, X. M. Li, Q. Yang, D. B. Wang, F. B. Yao, J. Cao, Z. Chen, X. D. Huang, Y. Yang, and X. P. Li (2020). Chem. Eng. J. 390, 124519–124531. https://doi.org/10.1016/j.cej.2020.124519.

    Article  CAS  Google Scholar 

  33. C. Gao, D. F. Zhang, X. P. Pu, X. Shao, H. Li, and D. D. Lv (2016). J. Am. Ceram. Soc. 99, 881–887. https://doi.org/10.1111/jace.14012.

    Article  CAS  Google Scholar 

  34. C. H. Deng and H. M. Guan (2013). Mater. Lett. 107, 119–122. https://doi.org/10.1016/j.matlet.2013.05.041.

    Article  CAS  Google Scholar 

  35. L. Q. Wang, Q. Zhao, Z. Q. Zhang, Z. N. Lu, Y. T. Zhao, and Y. L. Tang (2018). ACS Appl. Bio Mater. 1, 1478–1486. https://doi.org/10.1021/acsabm.8b00422.

    Article  CAS  PubMed  Google Scholar 

  36. Q. Q. Xu, H. Yi, C. Lai, G. M. Zeng, D. L. Huang, M. F. Li, Z. W. An, X. Q. Huo, L. Qin, S. Y. Liu, B. S. Li, M. M. Zhang, X. G. Liu, and L. Chen (2019). Catal. Commun. 124, 113–117. https://doi.org/10.1016/j.catcom.2019.03.013.

    Article  CAS  Google Scholar 

  37. L. J. Niu, G. M. Zhang, G. Xian, Z. J. Ren, T. Wei, Q. G. Li, Y. Zhang, and Z. G. Zou (2021). Sep. Purif. Technol. 259. https://doi.org/10.1016/j.catcom.2019.03.013.

    Article  CAS  Google Scholar 

  38. H. Wang, C. Y. Zhang, T. L. Chang, J. Z. Su, X. F. Wu, M. C. Song, L. L. Wang, H. Yang, and L. J. Ci (2021). J. Mater. Sci.: Mater. Electron. 32, 2822–2831. https://doi.org/10.1007/s10854-020-05035-6.

    Article  CAS  Google Scholar 

  39. Q. Tang, Z. Zhou, and P. W. Shen (2012). J. Am. Chem. Soc. 134, 16909–16917. https://doi.org/10.1021/ja308463r.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project was supported the National Natural Science Foundation of China (21865030) and Gansu International Sci & Techn Coop-Base for Water-retention Functional Materials.

Author information

Authors and Affiliations

Authors

Contributions

YZ: writing—original draft, data curation, formal analysis, writing. HY: validation, writing—review & editing. PC: validation, writing—review & editing. YH: project administration, visualization. YZ: investigation. PS: visualization. RW: supervision, project administration, funding acquisition, conceptualization, writing—review & editing.

Corresponding authors

Correspondence to Yufeng He or Rongmin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, H., Cao, P. et al. Construction of UiO-NH2@TiC Schottky Junction and Their Effectively Photocatalytic and Antibacterial Performance. J Clust Sci 34, 373–383 (2023). https://doi.org/10.1007/s10876-022-02233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02233-6

Keywords

Navigation