Skip to main content

Advertisement

Log in

NiSe2/Mn0.3Cd0.7S Schottky junction catalyst for enhanced photocatalytic hydrogen production under visible light

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanorod-like NiSe2/Mn0.3Cd0.7S (NiSe2/MCS) Schottky junction photocatalysts were fabricated via a two-step solvothermal approach. The NiSe2 nanoparticles were uniformly precipitated on the surface of the Mn0.3Cd0.7S (MCS) nanorods. The Schottky junctions were formed at the interface region of the MCS nanorods and the NiSe2 nanoparticles, strengthening the visible-light absorption intensity and accelerating the separation of photoinduced electron–hole pairs. The resulting built-in electric field prevents the photo-excited electrons from migrating back to MCS and reduces the charge carrier recombination, thus, improving the photocatalytic hydrogen production performance. When the mass ratio of NiSe2 to MCS is 10 wt%, the hydrogen production rate of 10 mg NiSe2/MCS reaches up to 687 μmol·h−1 at the temperature of 15°C, which is 3.3 times that of the unmodified MCS. The solar-to-hydrogen (STH) conversion efficiency of 10 wt% NiSe2/MCS is about 0.95%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available in this published article or are available from the corresponding author on reasonable request.

References

  1. Y. Chew, B. Ng, X.Y. Kong, L.K. Putri, J. Tang, L. Tan et al., Interfacial engineering of a zinc blende/wurtzite homojunction photocatalyst through hybridization with a cobalt phosphide co-catalyst for enhanced visible-light-driven photocatalytic H2 evolution. Sustain. Energ. Fuels. 4(4), 1822–1827 (2020). https://doi.org/10.1039/c9se00800d

    Article  CAS  Google Scholar 

  2. X. Zou, M. Azam, T. Islam, K. Zaman, Environment and air pollution like gun and bullet for low-income countries: war for better health and wealth. Environ. Sci. Pollut. R. 23(4), 3641–3657 (2015). https://doi.org/10.1007/s11356-015-5591-3

    Article  CAS  Google Scholar 

  3. S.M. Cruz, Lateral attitude change on environmental issues: Implications for the climate change debate. Clim. Change 156(1), 151–169 (2019). https://doi.org/10.1007/s10584-019-02474-x

    Article  Google Scholar 

  4. Y. Xu, R. Xu, Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 351, 779–793 (2015). https://doi.org/10.1016/j.apsusc.2015.05.171

    Article  CAS  Google Scholar 

  5. Y. Li, S. Wan, C. Lin, Y. Gao, Y. Lu, L. Wang et al., Engineering of 2D/2D MoS2/CdxZn1−xS photocatalyst for solar H2 evolution coupled with degradation of plastic in alkaline solution. Solar. RRL. 5(6), 2000427 (2020). https://doi.org/10.1002/solr.202000427

    Article  CAS  Google Scholar 

  6. J. Khan, M.H. Arsalan, Solar power technologies for sustainable electricity generation—a review. Renew. Sust. Energ. Rev 55, 414–425 (2016). https://doi.org/10.1016/j.rser.2015.10.135

    Article  Google Scholar 

  7. L. Hong, R. Gu, Y. Yuan, X. Ji, Z. Lin, Z. Li et al., Recent progress of transition metal phosphides for photocatalytic hydrogen evolution. ChemSusChem. 14(2), 539–557 (2020). https://doi.org/10.1002/cssc.202002454

    Article  CAS  Google Scholar 

  8. V.N. Rao, N.L. Reddy, M.M. Kumari, K.K. Cheralathan, P. Ravi, M. Sathish et al., Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: a review. J. Environ. Manage. 248, 109246 (2019). https://doi.org/10.1016/j.jenvman.2019.07.017

    Article  CAS  Google Scholar 

  9. A. Abánades, C. Rubbi, D. Salmieri, Thermal cracking of methane into Hydrogen for a CO2-free utilization of natural gas. Int. J. Hydrogen. Energy 38(20), 8491–8496 (2013). https://doi.org/10.1016/j.ijhydene.2012.08.138

    Article  CAS  Google Scholar 

  10. B. Song, M. Chen, G. Zeng, J. Gong, M. Shen, W. Xiong et al., Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: a review. J. Hazard. Mater. 398, 122957 (2020). https://doi.org/10.1016/j.jhazmat.2020.122957

    Article  CAS  Google Scholar 

  11. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1016/j.jhazmat.2020.122957

    Article  CAS  Google Scholar 

  12. D. Meissner, R. Memming, B. Kastening, Photoelectrochemistry of cadmium sulfide: 1. Reanalysis of photocorrosion and flat-band potential. J. Phys. Chem. C. 92(12), 3476–3483 (1988). https://doi.org/10.1021/j100323a032

    Article  CAS  Google Scholar 

  13. T.P. Yendrapati, J. Soumya, S. Bojja, U. Pal, Robust Co9S8@ CdIn2S4 cage for efficient photocatalytic H2 evolution. J. Phys. Chem. C. 125(9), 5099–5109 (2021). https://doi.org/10.1021/acs.jpcc.0c11554

    Article  CAS  Google Scholar 

  14. Y.X. Tan, Z.M. Chai, B.H. Wang, S. Tian, X.X. Deng, Z.J. Bai et al., Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: Synergetic effect of compact heterojunction and S-vacancy. ACS. Catal. 11(5), 2492–2503 (2021). https://doi.org/10.1021/acscatal.0c05703

    Article  CAS  Google Scholar 

  15. W. Chen, T. Huang, Y.X. Hua, T.Y. Liu, X.F. Liu, S.M. Chen et al., Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity. J. Hazard. Mater. 320, 529–538 (2016). https://doi.org/10.1016/j.jhazmat.2016.08.025

    Article  CAS  Google Scholar 

  16. Y. Han, X. Dong, Z. Liang, Synthesis of MnxCd1−xS nanorods and modification with CuS for extraordinarily superior photocatalytic H2 production. Catal. Sci. Technol. 9(6), 1427–1436 (2019). https://doi.org/10.1039/c8cy02179a

    Article  CAS  Google Scholar 

  17. H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei et al., Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 266(2), 165–168 (2009). https://doi.org/10.1016/j.jcat.2009.06.024

    Article  CAS  Google Scholar 

  18. I. Tsuji, H. Kato, A. Kudo, Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands. Chem. Mater. 18(7), 1969–1975 (2006). https://doi.org/10.1021/cm0527017

    Article  CAS  Google Scholar 

  19. Y. Sasaki, A. Iwase, H. Kato, A. Kudo, The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J. Catal. 259(1), 133–137 (2008). https://doi.org/10.1016/j.jcat.2008.07.017

    Article  CAS  Google Scholar 

  20. T. Sano, Effect of Pd-photodeposition over TiO2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. J. Mol. Catal. A-Chem. 189(2), 263–270 (2002). https://doi.org/10.1016/s1381-1169(02)00353-9

    Article  CAS  Google Scholar 

  21. Y.W. Tai, J.S. Chen, C.C. Yang, B.Z. Wan, Preparation of nano-gold on K2La2Ti3O10 for producing hydrogen from photo-catalytic water splitting. Catal. Today. 97(2–3), 95–101 (2004). https://doi.org/10.1016/j.cattod.2004.04.054

    Article  CAS  Google Scholar 

  22. J. Jia, X. Bai, Q. Zhang, X. Hu, E. Liu, J. Fan, Porous honeycomb-like NiSe2/red phosphorus heteroarchitectures for photocatalytic hydrogen production. Nanoscale 12, 5636–5651 (2020). https://doi.org/10.1039/C9NR09757K

    Article  CAS  Google Scholar 

  23. H. Liu, T. Yan, Z. Jin, Q. Ma, Efficient photocatalytic hydrogen production by Mn0.05Cd0.95S nanoparticles anchored on cubic NiSe2. New J. Chem. 44, 14879–14889 (2020). https://doi.org/10.1039/D0NJ03271A

    Article  CAS  Google Scholar 

  24. X. Chen, X. Wang, X. Zhang, D. Liu, K. Srinivas, F. Ma et al., Facile and scalable synthesis of heterostructural NiSe2/FeSe2 nanoparticles as efficient and stable binder-free electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 46(71), 35198–35208 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.090

    Article  CAS  Google Scholar 

  25. Y. Han, X. Dong, Mn0.3Cd0.7S nanorods modified by amorphous FexP with improved photocatalytic activity and stability for H2 evolution. Catal. Lett. 152(6), 1660–1668 (2021). https://doi.org/10.1007/s10562-021-03758-7

    Article  CAS  Google Scholar 

  26. H. Liu, T. Yan, Z. Jin, Q. Ma, Efficient photocatalytic hydrogen production by Mn0.05Cd0.95S nanoparticles anchored on cubic NiSe2. New. J. Chem. 44(35), 14879–14889 (2020). https://doi.org/10.1039/d0nj03271a

    Article  CAS  Google Scholar 

  27. Q.Z. Huang, Z.J. Tao, L.Q. Ye, H.C. Yao, Z.J. Li, Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl. Catal. B Environ. 237, 689–698 (2018). https://doi.org/10.1016/j.apcatb.2018.06.040

    Article  CAS  Google Scholar 

  28. D. Kong, D. Yin, D. Zhang, F. Yuan, B. Song, S. Yao et al., Noble metal-free 0D–1D NiCoP/Mn0.3Cd0.7S nanocomposites for highly efficient photocatalytic H2 evolution under visible-light irradiation. Nanotechnology 31(30), 305701 (2020). https://doi.org/10.1088/1361-6528/ab8850

    Article  CAS  Google Scholar 

  29. Y. Han, Q. Zhang, Z. Liang, J. Geng, X. Dong, Mn0.3Cd0.7S nanorods modified with NiS clusters as photocatalysts for the H2 evolution reaction. J. Mater. Sci. 55(13), 5390–5401 (2020). https://doi.org/10.1007/s10853-020-04405-z

    Article  CAS  Google Scholar 

  30. B. Yu, X. Wang, F. Qi, B. Zheng, J. Hei, W. Zhang et al., Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS. Appl. Mater. Inter. 9(8), 7154–7159 (2017). https://doi.org/10.1021/acsami.6b15719

    Article  CAS  Google Scholar 

  31. S. Shen, L. Yan, K. Song, Z. Lin, Z. Wang, D. Du et al., NiSe2/CdS composite nanoflakes photocatalyst with enhanced activity under visible light. RSC Adv. 10(69), 42008–42013 (2020). https://doi.org/10.1039/d0ra09272j

    Article  CAS  Google Scholar 

  32. D. Song, H. Wang, X. Wang, B. Yu, Y. Chen, NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta. 254, 230–237 (2017). https://doi.org/10.1016/j.electacta.2017.09.056

    Article  CAS  Google Scholar 

  33. H. Qin, Y. Zuo, J. Jin, W. Wang, Y. Cu, L. Cui et al., ZnO nanorod arrays grown on g-C3N4 micro-sheets for enhanced visible light photocatalytic H2 evolution. RSC Adv. 9, 24483–24488 (2019). https://doi.org/10.1039/C9RA03426A

    Article  CAS  Google Scholar 

  34. M. Hou, L. Cui, F. Su, X. Dong, H. Dang, Two-step calcination synthesis of Z-scheme α-Fe2O3/few-layer g-C3N4 composite with enhanced hydrogen production and photodegradation under visible light. J. Chin. Chem. Soc. 67, 2050–2061 (2020). https://doi.org/10.1002/jccs.202000127

    Article  CAS  Google Scholar 

  35. H. Zhang, P. Zhang, M. Qiu, J. Dong, Y. Zhang, X.W. Lou, Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv. Mater. 31(6), 1804883 (2019). https://doi.org/10.1002/adma.201804883

    Article  CAS  Google Scholar 

  36. H. Dang, S. Mao, Q. Li, M. Li, M. Shao, W. Wang et al., Synergy of nitrogen vacancies and partially broken hydrogen bonds in graphitic carbon nitride for superior photocatalytic hydrogen evolution under visible light. Catal. Sci. Technol. 12, 5032–5044 (2022). https://doi.org/10.1039/d2cy00831a

    Article  CAS  Google Scholar 

  37. Z. Li, Y. Wu, G. Lu, Highly efficient hydrogen evolution over Co(OH)2 nanoparticles modified g-C3N4 co-sensitized by Eosin Y and Rose Bengal under visible light irradiation. Appl. Catal. B-Environ. 188, 56–64 (2018). https://doi.org/10.1016/j.apcatb.2016.01.057

    Article  CAS  Google Scholar 

  38. Z. Chen, H. Gong, Q. Liu, M. Song, C. Huang, NiSe2 nanoparticles grown in situ on CdS nanorods for enhanced photocatalytic hydrogen evolution. ACS. Sustain. Chem. Eng. 7(19), 16720–16728 (2019). https://doi.org/10.1021/acssuschemeng.9b04173

    Article  CAS  Google Scholar 

  39. X. Zhang, C. Xi, Y. Yue, P. Deng, L. Zhang, Y. Hou, Promoted interfacial charge transfer by coral-like nickel diselenide for enhanced photocatalytic hydrogen evolution over carbon nitride nanosheet. Int. J. Hydrogen Energ. 47(3), 1624–1632 (2021). https://doi.org/10.1016/j.ijhydene.2021.10.225

    Article  CAS  Google Scholar 

  40. H. Dang, B. Li, C. Li, Y. Zang, P. Xu, X. Zhao et al., One-dimensional Au/SiC heterojunction nanocomposites with enhanced photocatalytic and photoelectrochemical performances: kinetics and mechanism insights. Electrochim. Acta. 267, 24–33 (2018). https://doi.org/10.1016/j.electacta.2018.02.070

    Article  CAS  Google Scholar 

  41. J. Zhang, C. Cheng, F.S. Xing, C. Chen, C. Huang, 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production. Chem. Eng. J. 414, 129157 (2021). https://doi.org/10.1016/j.cej.2021.129157

    Article  CAS  Google Scholar 

  42. S. Acharya, D. Kandi, K. Parida, CdS QD decorated LaFeO3 nanosheets for photocatalytic application under visible light irradiation. ChemistrySelect. 5(20), 6153–6161 (2020). https://doi.org/10.1002/slct.202000220

    Article  CAS  Google Scholar 

  43. S. Shen, H. Zhang, A. Xu, Y. Zhao, Z. Lin, Z. Wang et al., Construction of NiSe2/BiVO4 Schottky junction derived from work function discrepancy for boosting photocatalytic activity. J. Alloy. Compd. 875, 160071 (2021). https://doi.org/10.1016/j.jallcom.2021.160071

    Article  CAS  Google Scholar 

  44. Q. Qiao, K. Yang, L.L. Ma, W.Q. Huang, B.X. Zhou, A. Pan et al., Facile in situ construction of mediator-free direct Z-scheme g-C3N4/CeO2 heterojunctions with highly efficient photocatalytic activity. J. Phys. D. Appl. Phys. 51(27), 275302 (2018). https://doi.org/10.1088/1361-6463/aac817

    Article  CAS  Google Scholar 

  45. X. Jiang, H. Gong, Q. Liu, M. Song, C. Huang, In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light. Appl. Catal. B-Environ. 268, 118439 (2020). https://doi.org/10.1016/j.apcatb.2019.118439

    Article  CAS  Google Scholar 

  46. Z. Zhang, J.T. Yates, Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012). https://doi.org/10.1021/cr3000626

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn) for the expert linguistic services provided.

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21978098), the Natural Science Foundation of Guangdong Province of China (No. 2020A1515010488), the Characteristic Innovation Project of Universities in Guangdong Province (No. 2022KTSCX140), the Dongguan Science and Technology Special Correspondent Project (No. 20221800500292) and the Dongguan Science and Technology of Social Development Program (No. 20211800904912).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haifeng Dang or Xinfa Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 225 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, B., Wang, S., Dang, H. et al. NiSe2/Mn0.3Cd0.7S Schottky junction catalyst for enhanced photocatalytic hydrogen production under visible light. Journal of Materials Research 38, 4324–4333 (2023). https://doi.org/10.1557/s43578-023-01146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01146-y

Keywords

Navigation