Skip to main content
Log in

Polyvinylpyrrolidone-Curcumin Nanoconjugate as a Biocompatible, Non-toxic Material for Biological Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Curcumin is a widely used compound having numerous protective roles. The clinical applications of curcumin are limited because of the poor solubility, low cellular uptake, low physiochemical stability, and rapid systemic clearance. The solubility and bioavailability of curcumin can be enhanced by various nanoformulations. In the present study, we have synthesized a highly stable polymeric polyvinylpyrrolidone-curcumin nanoparticle (PVP-C), by conjugating curcumin and polyvinylpyrrolidone (PVP). Characterization was carried out by using UV–vis spectroscopy, dynamic light scattering (DLS), and zeta potential. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis were performed to study the surface characteristics. The nanoparticles of various concentrations (5 and 10 µM) were fed orally to Drosophila melanogaster and investigated for biocompatibility and anti-diabetic potentiality. Flies reared on these nanoparticles did not show any alteration in the developmental cycle and growth. The crawling pattern of larvae depicted no alteration and the gut epithelial cells showed neither any cytotoxic damage nor any micronucleus formation. Behavioral and morphological analyses were performed with the adult flies, which showed the non-cytotoxicity and non-genotoxicity of the nanoparticles (NPs). Diabetic flies fed with PVP-C, showed significant changes in the body weight and metabolites, demonstrating the anti-diabetic potential of the PVP-C nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Hood (2004). Nanotechnology: looking as we leap. Environ Health Perspect. 112 (13), 740–749.

    Article  Google Scholar 

  2. A. Nel, T. Xia, L. Mädler, and N. Li (2006). Toxic potential of materials at the nanolevel. Science 311, 622–627.

    Article  CAS  PubMed  Google Scholar 

  3. S. Rizvi and A. Saleh (2018). Applications of nanoparticle systems in drug delivery technology. Saudi. Pharm. J 26, 64–70.

    Article  PubMed  Google Scholar 

  4. M. Tarantash, H. Nosrati, H. Kheiri Manjili, and A. Baradar Khoshfetrat (2018). Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles. Drug Dev Ind Pharm. 44, 1895–1903.

    Article  CAS  PubMed  Google Scholar 

  5. Y.-C. Yeh, B. Creran, and V. M. Rotello (2012). Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871–1880.

    Article  CAS  PubMed  Google Scholar 

  6. N. Jardón-Maximino, M. Pérez-Alvarez, R. Sierra-Ávila, C. A. Ávila-Orta, E. Jiménez-Regalado, A. M. Bello, P. González-Morones, and G. Cadenas-Pliego (2018). Oxidation of copper nanoparticles protected with different coatings and stored under ambient conditions. J. Nanomater. 2018, 1–8.

    Article  Google Scholar 

  7. L. Gunti, R. S. Dass, and N. K. Kalagatur (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front. Microbiol. 10, 931.

    Article  PubMed  PubMed Central  Google Scholar 

  8. T. T. V. Phan, T.-C. Huynh, P. Manivasagan, S. Mondal, and J. Oh (2020). An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials 10, 66.

    Article  CAS  Google Scholar 

  9. A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro, and S. Paoletti (2009). Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10, 1429–1435.

    Article  CAS  PubMed  Google Scholar 

  10. K. Rostamizadeh, M. Manafi, H. Nosrati, H. K. Manjili, and H. Danafar (2018). Methotrexate-conjugated mPEG–PCL copolymers: a novel approach for dual triggered drug delivery. N. J. Chem. 42, 5937–5945.

    Article  CAS  Google Scholar 

  11. M. Shim, N. W. Shi Kam, R. J. Chen, Y. Li, and H. Dai (2002). Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2, 285–288.

    Article  CAS  Google Scholar 

  12. S. Ichikawa, S. Iwamoto, and J. Watanabe (2005). Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Biosci. Biotechnol. Biochem. 69, 1637–1642.

    Article  CAS  PubMed  Google Scholar 

  13. S.-J. Choi, J.-M. Oh, and J.-H. Choy (2010). Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. J. Nanosci. Nanotechnol. 10, 2913–2916.

    Article  CAS  PubMed  Google Scholar 

  14. E. K. Hill and J. Li (2017). Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol. 8, 1–13.

    Article  Google Scholar 

  15. M. Moniruzzaman and T. Min (2020). Curcumin, curcumin nanoparticles and curcumin nanospheres: a review on their pharmacodynamics based on monogastric farm animal, poultry and fish nutrition. Pharmaceutics 12, 447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Gera, N. Sharma, M. Ghosh, D. L. Huynh, S. J. Lee, T. Min, T. Kwon, and D. K. Jeong (2017). Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget 8, 66680.

    Article  PubMed  PubMed Central  Google Scholar 

  17. A. Karthikeyan, N. Senthil, and T. Min (2020). Nanocurcumin: a promising candidate for therapeutic applications. Front. Pharmacol. 11, 487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. B. Zheng, S. Peng, X. Zhang, and D. J. McClements (2018). Impact of delivery system type on curcumin bioaccessibility: comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. J. Agric. Food Chem. 66, 10816–10826.

    Article  CAS  PubMed  Google Scholar 

  19. M.-T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. H. Conney (1991). Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res. 51, 813–819.

    CAS  PubMed  Google Scholar 

  20. M. Rao (1994). Curcuminoids as potent inhibitors of lipid peroxidation. J. Pharm. Pharmacol. 46, 1013–1016.

    CAS  PubMed  Google Scholar 

  21. M. Suzuki, T. Nakamura, S. Iyoki, A. Fujiwara, Y. Watanabe, K. Mohri, K. Isobe, K. Ono, and S. Yano (2005). Elucidation of anti-allergic activities of curcumin-related compounds with a special reference to their anti-oxidative activities. Biol. Pharm. Bull. 28, 1438–1443.

    Article  CAS  PubMed  Google Scholar 

  22. M. Kharat and D. J. McClements (2019). Recent advances in colloidal delivery systems for nutraceuticals: a case study–delivery by design of curcumin. J. Colloid Interface Sci. 557, 506–518.

    Article  CAS  PubMed  Google Scholar 

  23. N. Ghalandarlaki, A. M. Alizadeh, and S. Ashkani-Esfahani (2014). Nanotechnology-applied curcumin for different diseases therapy. Biomed Res. Int. 2014, 1–23.

    Article  Google Scholar 

  24. T. Kurita and Y. Makino (2013). Novel curcumin oral delivery systems. Anticancer Res. 33, 2807–2821.

    CAS  PubMed  Google Scholar 

  25. K. M. Nelson, J. L. Dahlin, J. Bisson, J. Graham, G. F. Pauli, and M. A. Walters (2017). The essential medicinal chemistry of curcumin: miniperspective. J. Med. Chem. 60, 1620–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. Sobh, W. Mohamed, A. Moustafa, and H. Nasr (2015). Encapsulation of curcumin and curcumin derivative in polymeric nanospheres. Polym. Plast. Technol. Eng. 54, 1457–1467.

    Article  CAS  Google Scholar 

  27. O. Naksuriya, S. Okonogi, R. M. Schiffelers, and W. E. Hennink (2014). Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35, 3365–3383.

    Article  CAS  PubMed  Google Scholar 

  28. H. Valizadeh, S. Abdolmohammadi-Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi, L. Roshangar, S. Aslani, A. Esmaeilzadeh, M. Ghaebi, S. Valizadeh, and M. Ahmadi (2020). Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 89, 107088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. C. D. Silva, P. D. D. F. Santos, J. T. D. P. Silva, F. V. Leimann, L. Bracht, and O. H. Gonçalves (2018). Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci. Technol. 72, 74–82.

    Article  Google Scholar 

  30. N. A. Dangelo, M. A. Noronha, I. S. Kurnik, M. C. C. Câmara, J. M. Vieira, L. Abrunhosa, J. T. Martins, T. F. R. Alves, L. L. Tundisi, J. A. Ataide, J. S. R. Costa, A. F. Jozala, L. O. Nascimento, P. G. Mazzola, M. V. Chaud, A. A. Vicente, and A. M. Lopes (2021). Curcumin encapsulation in nanostructures for cancer therapy: A 10-year overview. Int. J. Pharm. 604, 120534.

    Article  CAS  PubMed  Google Scholar 

  31. S. Prasad, A. K. Tyagi, and B. B. Aggarwal (2014). Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat. 46, 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Kunwar, A. Barik, R. Pandey, and K. I. Priyadarsini (2006). Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study. Biochim. Biophys. Acta Gen. Subj. 1760, 1513–1520.

    Article  CAS  Google Scholar 

  33. R. K. Gangwar, G. B. Tomar, V. A. Dhumale, S. Zinjarde, R. B. Sharma, and S. Datar (2013). Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J. Agric. Food Chem. 61, 9632–9637.

    CAS  PubMed  Google Scholar 

  34. L. Ma’mani, S. Nikzad, H. Kheiri-Manjili, S. Al-Musawi, M. Saeedi, S. Askarlou, A. Foroumadi, and A. Shafiee (2014). Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: Practical strategy for the breast cancer therapy. Eur. J. Med. Chem. 83, 646–654.

    Article  CAS  PubMed  Google Scholar 

  35. S. K. Natarajan and S. Selvaraj (2014). Mesoporous silica nanoparticles: importance of surface modifications and its role in drug delivery. RSC Adv. 4, 14328–14334.

    Article  CAS  Google Scholar 

  36. C. A. Lipinski (2000). Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol Methods 44, 235–249.

    Article  CAS  PubMed  Google Scholar 

  37. A. S. Narang and R. I. Mahato, Targeted Delivery of Small and Macromolecular Drugs (CRC Press, London, 2010).

    Book  Google Scholar 

  38. J. Han, D. Zhao, D. Li, X. Wang, Z. Jin, and K. Zhao (2018). Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 10, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  39. R. Rajan, S. Ahmed, N. Sharma, N. Kumar, A. Debas, and K. Matsumura (2021). Review of the current state of protein aggregation inhibition from a materials chemistry perspective: special focus on polymeric materials. Mater. Adv. 2, 1139–1176.

    Article  CAS  Google Scholar 

  40. H. K. Manjili, A. Sharafi, H. Danafar, M. Hosseini, A. Ramazani, and M. H. Ghasemi (2016). Poly (caprolactone)–poly (ethylene glycol)–poly (caprolactone)(PCL–PEG–PCL) nanoparticles: a valuable and efficient system for in vitro and in vivo delivery of curcumin. RSC Adv. 6, 14403–14415.

    Article  CAS  Google Scholar 

  41. V. Prosapio, I. De Marco, and E. Reverchon (2016). PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chem. Eng. J 292, 264–275.

    Article  CAS  Google Scholar 

  42. P. Franco and I. De Marco (2020). The use of poly (N-vinyl pyrrolidone) in the delivery of drugs: a review. Polymers 12, 1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. N. Kuskov, P. P. Kulikov, A. V. Goryachaya, M. N. Tzatzarakis, A. M. Tsatsakis, K. Velonia, and M. I. Shtilman (2018). Self-assembled amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: stability aspects. J Appl. Polym. Sci. 135, 45637.

    Article  Google Scholar 

  44. F. Haaf, A. Sanner, and F. Straub (1985). Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polym. J. 17, 143–152.

    Article  CAS  Google Scholar 

  45. S. Jadhav, D. Nikam, V. Khot, N. Thorat, M. R. Phadatare, R. Ningthoujam, A. Salunkhe, and S. Pawar (2013). Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. N. J. Chem. 37, 3121–3130.

    Article  CAS  Google Scholar 

  46. G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, and X. Liu (2012). Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 4, 310–316.

    Article  CAS  PubMed  Google Scholar 

  47. H. Ziaei-Azad and N. Semagina (2014). Bimetallic catalysts: requirements for stabilizing PVP removal depend on the surface composition. Appl. Catal. A-Gen. 482, 327–335.

    Article  CAS  Google Scholar 

  48. K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44, 17883–17905.

    Article  CAS  PubMed  Google Scholar 

  49. C. Graf, S. Dembski, A. Hofmann, and E. Rühl (2006). A general method for the controlled embedding of nanoparticles in silica colloids. Langmuir 22, 5604–5610.

    Article  CAS  PubMed  Google Scholar 

  50. R. Si, Y.-W. Zhang, L.-P. You, and C.-H. Yan (2006). Self-organized monolayer of nanosized ceria colloids stabilized by poly (vinyl pyrrolidone). J. Phys. Chem. B 110, 5994–6000.

    Article  CAS  PubMed  Google Scholar 

  51. A. Kyrychenko, O. M. Korsun, I. I. Gubin, S. M. Kovalenko, and O. N. Kalugin (2015). Atomistic simulations of coating of silver nanoparticles with poly (vinyl pyrrolidone) oligomers: effect of oligomer chain length. J. Phys. Chem. C 119, 7888–7899.

    Article  CAS  Google Scholar 

  52. Y. Sun and Y. Xia (2002). Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 14, 833–837.

    Article  CAS  Google Scholar 

  53. F. Kim, S. Connor, H. Song, T. Kuykendall, and P. Yang (2004). Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677.

    Article  CAS  Google Scholar 

  54. Y. Wang, P. Chen, and M. Liu (2006). Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnol. 17, 6000.

    Article  CAS  Google Scholar 

  55. Q. Shen, Q. Min, J. Shi, L. Jiang, J.-R. Zhang, W. Hou, and J.-J. Zhu (2009). Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J. Phys. Chem. C 113, 1267–1273.

    Article  CAS  Google Scholar 

  56. F. Ye, W. Hu, T. Zhang, J. Yang, and Y. Ding (2012). Enhanced electrocatalytic activity of Pt-nanostructures prepared by electrodeposition using poly (vinyl pyrrolidone) as a shape-control agent. Electrochim. Acta 83, 383–386.

    Article  CAS  Google Scholar 

  57. Y.-J. Zhang, Q. Yao, Y. Zhang, T.-Y. Cui, D. Li, W. Liu, W. Lawrence, and Z.-D. Zhang (2008). Solvothermal synthesis of magnetic chains self-assembled by flowerlike cobalt submicrospheres. Cryst. Growth Des. 8, 3206–3212.

    Article  CAS  Google Scholar 

  58. W. Zhou, L. Lin, D. Zhao, and L. Guo (2011). Synthesis of nickel bowl-like nanoparticles and their doping for inducing planar alignment of a nematic liquid crystal. J. Am. Chem. Soc. 133, 8389–8391.

    Article  CAS  PubMed  Google Scholar 

  59. S. K. Singh, M. Yadav, S. Behrens, and P. W. Roesky (2013). Au-based bimetallic nanoparticles for the intramolecular aminoalkene hydroamination. Dalton Trans. 42, 10404–10408.

    Article  CAS  PubMed  Google Scholar 

  60. A. Villa, D. Wang, D. S. Su, and L. Prati (2015). New challenges in gold catalysis: bimetallic systems. Catal. Sci. Technol. 5, 55–68.

    Article  CAS  Google Scholar 

  61. J.-J. Lv, J.-N. Zheng, S.-S. Li, L.-L. Chen, A.-J. Wang, and J.-J. Feng (2014). Facile synthesis of Pt–Pd nanodendrites and their superior electrocatalytic activity. J. Mater. Chem. A 2, 4384–4390.

    Article  CAS  Google Scholar 

  62. M. C. Terence, S. B. Faldini, L. F. de Miranda, A. H. M. Júnior, and P. J. de Castro (2011). Preparation and characterization of a polymeric blend of PVP/PVAL for use in drug delivery system. J. Biomed. Nanotechnol. 7, 446–449.

    Article  CAS  PubMed  Google Scholar 

  63. B. Dong, L. M. Lim, and K. Hadinoto (2019). Enhancing the physical stability and supersaturation generation of amorphous drug-polyelectrolyte nanoparticle complex via incorporation of crystallization inhibitor at the nanoparticle formation step: a case of HPMC versus PVP. Eur. J. Pharm. Sci. 138, 105035.

    Article  CAS  PubMed  Google Scholar 

  64. R. Campardelli, G. Della Porta, L. Gomez, S. Irusta, E. Reverchon, and J. Santamaria (2014). Au-PLA nanocomposites for photo thermally controlled drug delivery. J Mater. Chem. B 2, 409–417.

    Article  CAS  PubMed  Google Scholar 

  65. R. Guduru, P. Liang, C. Runowicz, M. Nair, V. Atluri, and S. Khizroev (2013). Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci. Rep. 3, 1–8.

    Article  Google Scholar 

  66. R. Javed, M. Ahmed, I. U. Haq, S. Nisa, and M. Zia (2017). PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater. Sci. Eng. C 79, 108–115.

    Article  CAS  Google Scholar 

  67. D. Gaikwad, R. Shewale, V. Patil, D. Mali, U. Gaikwad, and N. Jadhav (2017). Enhancement in in vitro anti-angiogenesis activity and cytotoxicity in lung cancer cell by pectin-PVP based curcumin particulates. Int. J. Biol. Macromol. 104, 656–664.

    Article  CAS  PubMed  Google Scholar 

  68. V. P. Brahmkhatri, N. Sharma, P. Sunanda, A. D’Souza, S. Raghothama, and H. S. Atreya (2018). Curcumin nanoconjugate inhibits aggregation of N-terminal region (Aβ-16) of an amyloid beta peptide. N. J. Chem. 42, 19881–19892.

    Article  CAS  Google Scholar 

  69. M. C. Chifiriuc, A. C. Ratiu, M. Popa, and A. A. Ecovoiu (2016). Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int. J. Mol. Sci. 17, 36.

    Article  PubMed  PubMed Central  Google Scholar 

  70. P. Graham and L. Pick (2017). Drosophila as a model for diabetes and diseases of insulin resistance. Curr. Top. Dev. Biol. 121, 397–419.

    Article  CAS  PubMed  Google Scholar 

  71. J. M. Murillo-Maldonado and J. R. Riesgo-Escovar (2017). Development and diabetes on the fly. Mech. Dev. 144, 150–155.

    Article  CAS  PubMed  Google Scholar 

  72. A. Panacek, R. Prucek, D. Safarova, M. Dittrich, J. Richtrova, K. Benickova, R. Zboril, and L. Kvitek (2011). Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ. Sci. Technol. 45, 4974–4979.

    Article  CAS  PubMed  Google Scholar 

  73. R. A. Krebs and M. E. Feder (1997). Tissue-specific variation in Hsp70 expression and thermal damage in Drosophila melanogaster larvae. J Exp. Biol. 200, 2007–2015.

    Article  CAS  PubMed  Google Scholar 

  74. S. Priyadarsini, S. Mukherjee, and M. Mishra, Methodology to detect the abnormality of drosophila gut by various staining techniques, in M. Mishra (ed.), Fundamental Approaches to Screen Abnormalities in Drosophila (Springer, New York, 2020), pp. 51–64.

    Chapter  Google Scholar 

  75. J. R. Lakowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, and S. W. Hell (1997). Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation. Biophys. J 72, 567–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. H. Wang and J. A. Joseph (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612–616.

    Article  CAS  PubMed  Google Scholar 

  77. C. Green, B. Burnet, and K. Connolly (1983). Organization and patterns of inter-and intraspecific variation in the behaviour of Drosophila larvae. Anim. Behav. 31, 282–291.

    Article  Google Scholar 

  78. M. Mishra and B. K. Barik, Behavioral teratogenesis in Drosophila melanogaster, in L. Félix (ed.), Teratogenicity Testing (Springer, New York, 2018), pp. 277–298.

    Chapter  Google Scholar 

  79. C. D. Nichols, J. Becnel, and U. B. Pandey (2012). Methods to assay Drosophila behavior. J Vis Exp. https://doi.org/10.3791/3795e3795.

    Article  PubMed  PubMed Central  Google Scholar 

  80. S. A. Pappus, B. Ekka, S. Sahu, D. Sabat, P. Dash, and M. Mishra (2017). A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J. Nanopart. Res. 19, 136.

    Article  Google Scholar 

  81. S. T. Madabattula, J. C. Strautman, A. M. Bysice, J. A. O’Sullivan, A. Androschuk, C. Rosenfelt, K. Doucet, G. Rouleau, and F. Bolduc (2015). Quantitative analysis of climbing defects in a Drosophila model of neurodegenerative disorders. J Vis. Exp. 2013, 52741.

    Google Scholar 

  82. G. Dhar, S. Mukherjee, N. Nayak, S. Sahu, J. Bag, R. Rout, and M. Mishra, Various behavioural assays to detect the neuronal abnormality in flies, in M. Mishra (ed.), Fundamental Approaches to Screen Abnormalities in Drosophila (Springer, New York, 2020), pp. 223–251.

    Chapter  Google Scholar 

  83. S. Mukherjee and M. Mishra, Biochemical estimation to detect the metabolic pathways of Drosophila, in M. Mishra (ed.), Fundamental Approaches to Screen Abnormalities in Drosophila (Springer, New York, 2020), pp. 135–149.

    Chapter  Google Scholar 

  84. J. H. Waterborg, The Lowry method for protein quantitation, in J. M. Walker (ed.), The Protein Protocols Handbook (Humana Press, Totowa, 2009), pp. 7–10.

    Chapter  Google Scholar 

  85. J. W. Hickey, J. L. Santos, J.-M. Williford, and H.-Q. Mao (2015). Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release 219, 536–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. J.-Y. Choi, C. H. Park, and J. Lee (2008). Effect of polymer molecular weight on nanocomminution of poorly soluble drug. Drug Deliv. 15, 347–353.

    Article  CAS  PubMed  Google Scholar 

  87. S. Honary and F. Zahir (2013). Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop. J. Pharm. Res. 12, 265–273.

    Google Scholar 

  88. C. S. Thummel (2001). Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev. Cell 1, 453–465.

    Article  CAS  PubMed  Google Scholar 

  89. L. P. Watanabe and N. Riddle (2021). C (2021) Exercise-induced changes in climbing performance. R. Soc. Open Sci. 8, 211275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. S. Prasad and B. B. Aggarwal, Turmeric, the Golden Spice (CRC Press, London, 2011).

    Book  Google Scholar 

  91. S. Rivera-Mancía, J. Trujillo, and J. P. Chaverri (2018). Utility of curcumin for the treatment of diabetes mellitus: evidence from preclinical and clinical studies. J. Nutr. Intermed. Metab. 14, 29–41.

    Article  Google Scholar 

  92. C. D. Lao, M. T. Ruffin, D. Normolle, D. D. Heath, S. I. Murray, J. M. Bailey, M. E. Boggs, J. Crowell, C. L. Rock, and D. E. Brenner (2006). Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 6, 1–4.

    Article  Google Scholar 

  93. S. P. Weisberg, R. Leibel, and D. V. Tortoriello (2008). Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 149, 3549–3558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. M. Srinivasan (1972). Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J. Med. Sci. 26, 269–270.

    CAS  PubMed  Google Scholar 

  95. S. Chuengsamarn, S. Rattanamongkolgul, R. Luechapudiporn, C. Phisalaphong, and S. Jirawatnotai (2012). Curcumin extract for prevention of type 2 diabetes. Diabetes care 35, 2121–2127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. S. I. Sherwani, H. A. Khan, A. Ekhzaimy, A. Masood, and M. K. Sakharkar (2016). Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights 11, 38440.

    Article  Google Scholar 

  97. K. M. Seong, M. Yu, K.-S. Lee, S. Park, Y. W. Jin, and K.-J. Min (2015). Curcumin mitigates accelerated aging after irradiation in Drosophila by reducing oxidative stress. Biomed Res. Int. 2015, 1–8.

    Article  Google Scholar 

  98. Y. Chen, X. Liu, C. Jiang, L. Liu, J. M. Ordovas, C. Q. Lai, and L. Shen (2018). Curcumin supplementation increases survival and lifespan in Drosophila under heat stress conditions. Biofactors 44, 577–587.

    Article  CAS  PubMed  Google Scholar 

  99. P. Zhang, T. Li, X. Wu, E. C. Nice, C. Huang, and Y. Zhang (2020). Oxidative stress and diabetes: antioxidative strategies. Front Med. https://doi.org/10.1007/s11684-019-0729-11-18.

    Article  PubMed  PubMed Central  Google Scholar 

  100. L.-R. Shen, F. Xiao, P. Yuan, Y. Chen, Q.-K. Gao, L. D. Parnell, M. Meydani, J. M. Ordovas, D. Li, and C.-Q. Lai (2013). Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila. Age 35, 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  101. P. Basnet and N. Skalko-Basnet (2011). Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 16, 4567–4598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. W.-H. Lee, C.-Y. Loo, P. M. Young, D. Traini, R. S. Mason, and R. Rohanizadeh (2014). Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin. Drug Deliv. 11, 1183–1201.

    Article  CAS  PubMed  Google Scholar 

  103. P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal (2007). Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818.

    Article  CAS  PubMed  Google Scholar 

  104. M. Moballegh Nasery, B. Abadi, D. Poormoghadam, A. Zarrabi, P. Keyhanvar, H. Khanbabaei, M. Ashrafizadeh, R. Mohammadinejad, S. Tavakol, and G. Sethi (2020). Curcumin delivery mediated by bio-based nanoparticles: a review. Molecules 25, 689.

    Article  PubMed  PubMed Central  Google Scholar 

  105. M. Sun, X. Su, B. Ding, X. He, X. Liu, A. Yu, H. Lou, and G. Zhai (2012). Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine 7, 1085–1100.

    Article  CAS  PubMed  Google Scholar 

  106. C. Mohanty, M. Das, and S. K. Sahoo (2012). Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv. 9, 1347–1364.

    Article  CAS  PubMed  Google Scholar 

  107. Y. M. El-Far, M. M. Zakaria, M. M. Gabr, A. M. El Gayar, L. A. Eissa, and I. M. El-Sherbiny (2017). Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: potential use of curcumin nanoformulation. Nanomedicine 12, 1689–1711.

    Article  CAS  PubMed  Google Scholar 

  108. J. B. Sharma, S. Bhatt, V. Saini, and M. Kumar (2021). Pharmacokinetics and pharmacodynamics of curcumin-loaded solid lipid nanoparticles in the management of streptozotocin-induced diabetes mellitus: application of central composite design. ASSAY Drug Dev Technol. https://doi.org/10.1089/adt.2021.017.

    Article  PubMed  Google Scholar 

  109. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, and M. Mishra (2018). Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem. 8, 123–137.

    Article  CAS  Google Scholar 

  110. P. K. Mishra, A. Ekielski, S. Mukherjee, S. Sahu, S. Chowdhury, M. Mishra, S. Talegaonkar, L. Siddiqui, and H. Mishra (2019). Wood-based cellulose nanofibrils: haemocompatibility and impact on the development and behaviour of Drosophila melanogaster. Biomolecules 9, 363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. S.-E.A. Araj, N. M. Salem, I. H. Ghabeish, and A. M. Awwad (2015). Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J. Nanomater. 2015, 1–9.

    Article  Google Scholar 

  112. B. K. Barik and M. Mishra (2019). Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology 13, 258–284.

    Article  CAS  PubMed  Google Scholar 

  113. S. A. Pappus and M. Mishra, A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes (Springer International Publishing, Cham, 2018).

    Book  Google Scholar 

  114. M. Mishra, D. Sabat, B. Ekka, S. Sahu, P. Unnikannan, and P. Dash (2017). Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J. Nanopart. Res. 19, 1–12.

    Article  CAS  Google Scholar 

  115. D. Sabat, A. Patnaik, B. Ekka, P. Dash, and M. Mishra (2016). Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol. Behav. 167, 76–85.

    Article  CAS  PubMed  Google Scholar 

  116. S. Priyadarsini, S. K. Sahoo, S. Sahu, S. Mukherjee, G. Hota, and M. Mishra (2019). Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ. Sci. Pollut. Res. 26, 19560–19574.

    Article  CAS  Google Scholar 

  117. M. Balasubramanyam, A. A. Koteswari, R. S. Kumar, S. F. Monickaraj, J. U. Maheswari, and V. Mohan (2003). Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J. Biosci. 28, 715–721.

    Article  CAS  PubMed  Google Scholar 

  118. M. Lehane (1997). Peritrophic matrix structure and function. Annu. Rev. Entomol. 42, 525–550.

    Article  CAS  PubMed  Google Scholar 

  119. B. R. Jakubowski, R. A. Longoria, and G. T. Shubeita (2012). A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes. Fly 6, 303–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. S. Sahu and M. Mishra (2020). Hydroxyapatite nanoparticle causes sensory organ defects by targeting the retromer complex in Drosophila melanogaster. NanoImpact 19, 100237.

    Article  Google Scholar 

  121. J. Bag, S. Mukherjee, S. K. Ghosh, A. Das, A. Mukherjee, J. K. Sahoo, K. S. Tung, H. Sahoo, and M. Mishra (2020). Fe3O4 coated guargum nanoparticles as non-genotoxic materials for biological application. Int. J. Biol. Macromol. 165, 333–345.

    Article  CAS  PubMed  Google Scholar 

  122. N. P. Bokolia and M. Mishra (2015). Hearing molecules, mechanism and transportation: modeled in Drosophila melanogaster. Dev. Neurobiol. 75, 109–130.

    Article  PubMed  Google Scholar 

  123. N. Huang, Y. Yan, Y. Xu, Y. Jin, J. Lei, X. Zou, D. Ran, H. Zhang, S. Luan, and H. Gu (2013). Alumina nanoparticles alter rhythmic activities of local interneurons in the antennal lobe of Drosophila. Nanotoxicology 7, 212–220.

    Article  CAS  PubMed  Google Scholar 

  124. D. J. Den Hartogh, A. Gabriel, and E. Tsiani (2020). Antidiabetic properties of curcumin I: Evidence from in vitro studies. Nutrients 12, 118.

    Article  Google Scholar 

  125. D. J. Den Hartogh, A. Gabriel, and E. Tsiani (2020). Antidiabetic properties of curcumin II: evidence from in vivo studies. Nutrients 12, 58.

    Article  Google Scholar 

  126. L. P. Musselman, J. L. Fink, K. Narzinski, P. V. Ramachandran, S. S. Hathiramani, R. L. Cagan, and T. J. Baranski (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Models Mech. 4, 842–849.

    Article  CAS  Google Scholar 

  127. E. van Dam, L. A. van Leeuwen, E. Dos Santos, J. James, L. Best, C. Lennicke, A. J. Vincent, G. Marinos, A. Foley, and M. Buricova (2020). Sugar-induced obesity and insulin resistance are uncoupled from shortened survival in Drosophila. Cell Metab. 31 (710–725), 717.

    Google Scholar 

  128. L. P. Musselman, J. L. Fink, and T. J. Baranski (2019). Similar effects of high-fructose and high-glucose feeding in a Drosophila model of obesity and diabetes. PLoS ONE 14, e0217096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. S. E. la Fleur, M. C. Luijendijk, E. M. van der Zwaal, M. Brans, and R. Adan (2014). The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. Int. J Obes. 38, 643–649.

    Article  Google Scholar 

  130. N. Arun and N. Nalini (2002). Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum. Nutr. 57, 41–52.

    Article  CAS  PubMed  Google Scholar 

  131. A. Ejaz, D. Wu, P. Kwan, and M. Meydani (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr. 139, 919–925.

    Article  CAS  PubMed  Google Scholar 

  132. L. Alappat and A. B. Awad (2010). Curcumin and obesity: evidence and mechanisms. Nutr. Rev. 68, 729–738.

    Article  PubMed  Google Scholar 

  133. G. K. Jayaprakasha, L. J. Rao, and K. K. Sakariah (2006). Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98, 720–724.

    Article  CAS  Google Scholar 

  134. P. Suryanarayana, A. Satyanarayana, N. Balakrishna, P. U. Kumar, and G. B. Reddy (2007). Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med. Sci. Monit. 13, 286–292.

    Google Scholar 

  135. B. Bazzell, S. Ginzberg, L. Healy, and R. J. Wessells (2013). Dietary composition regulates Drosophila mobility and cardiac physiology. J. Exp. Biol. 216, 859–868.

    PubMed  PubMed Central  Google Scholar 

  136. A. K. Murashov, E. S. Pak, C. T. Lin, I. N. Boykov, K. A. Buddo, J. Mar, K. M. Bhat, and P. D. Neufer (2021). Preference and detrimental effects of high fat, sugar, and salt diet in wild-caught Drosophila simulans are reversed by flight exercise. FASEB BioAdv. 3, 49–64.

    Article  CAS  PubMed  Google Scholar 

  137. M. I. Khyati, N. Agrawal, and V. Kumar (2021). Melatonin and curcumin reestablish disturbed circadian gene expressions and restore locomotion ability and eclosion behavior in Drosophila model of Huntington’s disease. Chronobiol. Int. 38, 61–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Human Resource and Development (MHRD) for financial support and the National Institute of Technology (NIT) Rourkela for providing the research facilities.

Funding

The study was also supported by funding from the Department of Biotechnology (DBT) under Grant No BT/PR21857/NNT/28/1238/2017 and Science and Engineering Research Board (SERB) under Grant No EMR/2017/003054.

Author information

Authors and Affiliations

Authors

Contributions

MM, VB: Conceptualization; SM, PR: Methodology; SM, PR: Formal analysis and investigation; VB, MM: Writing- review and editing; MM:Funding acquisition; MM: Resources; MM, VB: Supervision.

Corresponding authors

Correspondence to Varsha Brahmkhatri or Monalisa Mishra.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Availability of Data and Material

All data and material regarding this work is completely transparent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Rananaware, P., Brahmkhatri, V. et al. Polyvinylpyrrolidone-Curcumin Nanoconjugate as a Biocompatible, Non-toxic Material for Biological Applications. J Clust Sci 34, 395–414 (2023). https://doi.org/10.1007/s10876-022-02230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02230-9

Keywords

Navigation