Skip to main content

Advertisement

Log in

Influence of Photon and Electrical Energy in the Nucleation of Silver Nanoparticles Synthesis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The current study presents a simple, low-cost, and rapid method for producing α-amylase capped silver nanoparticles (AgNPs). The electromagnetic irradiation approach significantly reduced reaction time and resulted in the nucleation of silver ions for nanoparticle formation. The electromagnetic energy (300 nm to 650 nm) and electrical potential (7 mV) have been tuned. This study outlines how electromagnetic energy is irradiated to cause chemical processes in the nucleation and development of silver ions. The incident energy wavelength varies from lower to higher wavelength; the Ag+ reduction rate slows and becomes more kinetically and dynamically regulated. The incident photon energy causes silver ions to reduce, resulting in stable colloidal AgNPs. The formation of particles of various sizes, like UV-light (68.2 nm), Blue light (59.7 nm), Green light (94.4 nm), Yellow light (79.2 nm), Orange light (91.3 nm), Red light (74.2 nm), and Electrical energy (98.3 nm). X-ray diffraction assesses the purity and crystalline nature of AgNPs, while transmission electron microscopy (TEM) was used to analyze the shape and morphology. The approach has been thoroughly documented and confirmed using UV–Visible spectroscopy, DLS, and fluorescence spectroscopy. Particles were deposited on steel electrodes for use in industrial and medicinal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source collimated with a black cover, Petri plates containing silver ions, and amylase solution are shown schematically in the UV-light radiation chamber

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng (2001). Science 5548, 1901–1903.

    Article  Google Scholar 

  2. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin (2003). Nature 6957, 487–490.

    Article  Google Scholar 

  3. C. Xue, G. S. Métraux, J. E. Millstone, and C. A. Mirkin (2008). J. Am. Chem. Soc. 26, 8337–8344.

    Article  Google Scholar 

  4. C. Pacholski, A. Kornowski, and H. Weller (2004). Angew. Chem. 36, 4878–4881.

    Article  Google Scholar 

  5. S. Srivastava, A. Santos, K. Critchley, K.-S. Kim, P. Podsiadlo, K. Sun, and J. Lee (2010). Science 5971, 1355–1359.

    Article  Google Scholar 

  6. N. Cathcart and V. Kitaev (2016). Sci. Rep. 1, 1–10.

    Google Scholar 

  7. Y. Xia, X. Xia, and H.-C. Peng (2015). J. Am. Chem. Soc. 25, 7947–7966.

    Article  Google Scholar 

  8. V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, and M. A. MIati (2017). J. Phys. 29 (20), 203002.

    Google Scholar 

  9. V. Bastys, I. Pastoriza-Santos, B. Rodríguez-González, R. Vaisnoras, and L. M. Liz-Marzán (2006). Adv. Funct. Mater. 6, 766–773.

    Article  Google Scholar 

  10. S. Motellier, N. Pélissier, and J.-G. Mattei (2018). Environ. Chem. 15 (7), 450–462.

    Article  CAS  Google Scholar 

  11. R. Jayakumar, M. Prabaharan, K. T. Shalumon, K. P. Chennazhi, and S. V. Nair (2011). Biomed. Appl. Polym. Nanofibers 24, 263–282.

    Article  Google Scholar 

  12. M. Singh, S. Singh, S. Prasad, and I. S. Gambhir (2008). Digest J. Nanomater. Biostruct. 3, 115–122.

    Google Scholar 

  13. A. Sironmani and K. Daniel (2011). Drug Discov. Dev. Present Future 41, 463–484.

    Google Scholar 

  14. A. Haider and I. K. Kang (2015). Adv. Mater. Sci. Eng. 2015, 1–25.

    Article  Google Scholar 

  15. A. Haider and I. K. Kang (2015). Adv. Mater. Sci. Eng. 2015, 1–25.

    Article  Google Scholar 

  16. K. A. Khalil, H. Fouad, T. Elsarnagawy, and F. N. Almajhdi (2013). Int. J. Electrochem. Sci. 3, 3483–3493.

    Google Scholar 

  17. S. Prabhu and E. K. Poulose (2012). Int. Nano Lett. 1, 1–10.

    Google Scholar 

  18. T. C. Dakal, A. Kumar, R. S. Majumdar, and V. Yadav (2016). Front. Microbiol. 7, 1831.

    Article  PubMed  PubMed Central  Google Scholar 

  19. V. Jaiswal, M. Samant, A. Kadir, K. Chaturvedi, A. B. Nawale, V. L. Mathe, and P. M. Dongre (2017). J. Inorg. Organometall. Polym. Mater. 5, 1211–1219.

    Article  Google Scholar 

  20. R.K. Sharma, S. Yadav, S. Dutta, H.B. Kale, I.R. Warkad, R. Zbořil, R.S. Varma, M.B. Gawande. Chem. Soc. Rev. 2021.

  21. M. Delcea, H. Möhwald, and A. G. Skirtach (2011). Adv. Drug Deliv. Rev. 63 (9), 730–747.

    Article  CAS  PubMed  Google Scholar 

  22. L. de Freitas, G. H. Varca, J. G. dos Santos Batista, and A. Benévo Lolugão (2018). Nanomaterials 8 (11), 939.

    Article  Google Scholar 

  23. J. Saade and C. B. de Araújo (2014). Mater. Chem. Phys. 3, 1184–1193.

    Article  Google Scholar 

  24. J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin (2009). Small. 6, 646–664.

    Article  Google Scholar 

  25. M. Waghmare, B. Khade, P. Chaudhari, and P. Dongre (2018). J. Nanoparticle Res. 7, 1–21.

    CAS  Google Scholar 

  26. B. S. Khade, P. G. Gawali, M. M. Waghmare, and P. M. Dongre (2021). Food Biophys. 2, 280–291.

    Article  Google Scholar 

  27. Z. Lalegani and S. S. Ebrahimi (2020). Colloids Surf. A 595, 124647.

    Article  CAS  Google Scholar 

  28. M. Grzelczak and L. M. Liz-Marzán (2014). Chem. Soc. Rev. 7, 2089–2097.

    Article  Google Scholar 

  29. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander (2011). Chem. Rev. 6, 3913–3961.

    Article  Google Scholar 

  30. A. C. Dhayagude, A. Das, S. S. Joshi, and S. Kapoor (2018). Colloids Surf. A 556, 148–156.

    Article  CAS  Google Scholar 

  31. W.-C. Hou, B. Stuart, R. Howes, and R. G. Zepp (2013). Environ. Sci. Technol. 14, 7713–7721.

    Article  Google Scholar 

  32. Z. Zhang, P.-C. Lin. in Emerging Applications of Nanoparticles and Architecture Nanostructures, (Elsevier, 2018), pp. 177–233

  33. K. G. Stamplecoskie and J. C. Scaiano (2010). J. Am. Chem. Soc. 6, 1825–1827.

    Article  Google Scholar 

  34. J. Zhang, M. R. Langille, and C. A. Mirkin (2011). Nano Letters 6, 2495–2498.

    Article  Google Scholar 

  35. J. C. Scaiano, K. G. Stamplecoskie, and G. L. Hallett-Tapley (2012). Chem. Commun. 40, 4798–4808.

    Article  Google Scholar 

  36. M. L. Marin, K. L. McGilvray, and J. C. Scaiano (2008). J. Am. Chem. Soc. 49, 16572–16584.

    Article  Google Scholar 

  37. B. Wiley, Y. Sun, B. Mayers, and Y. Xia (2005). Chem A 2, 454–463.

    Google Scholar 

  38. B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, and J. S. Kim (2007). J Colloid Interf. Sci. 311 (2), 417–424.

    Article  CAS  Google Scholar 

  39. Z. S. Pillai and P. V. Kamat (2004). J. Phys. Chem. B 3, 945–951.

    Article  Google Scholar 

  40. P. Gawali and B. L. Jadhav (2018). Process Biochem. 69, 106–122.

    Article  CAS  Google Scholar 

  41. L. Huang, M. L. Zhai, D. W. Long, J. Peng, Xu., Ling, G. Z. Wu, J. Q. Li, and G. S. Wei (2008). J. Nanoparticle Res. 7, 1193–1202.

    Article  Google Scholar 

  42. M. Wuithschick, B. Paul, R. Bienert, A. Sarfraz, U. Vainio, M. Sztucki, and R. Kraehnert (2013). Chem. Mater. 23, 4679–4689.

    Article  Google Scholar 

  43. J. Mariam, P. M. Dongre, and D. C. Kothari (2011). J. Fluoresc. 6, 2193–2199.

    Article  Google Scholar 

  44. R. Y. Sato-Berrú, A. R. Vázquez-Olmos, E. V. Mejía-Uriarte, M. E. Mata-Zamora, A. Solis-Gomez, F. Paraguay-Delgado, and J. M. Saniger (2018). J. Clust. Sci. 4, 719–724.

    Article  Google Scholar 

  45. M. L. Personick, M. R. Langille, J. Zhang, W. Jinsong, S. Li, and C. A. Mirkin (2013). Small 11, 1947–1953.

    Article  Google Scholar 

  46. Neto VD, Freire TM, Saraiva GD, Muniz CR, Cunha MS, Fechine PB, do Nascimento RF. in Nanomaterials Applications for Environmental Matrices. (Elsevier, 2019) pp. 187–225.

  47. J. Belloni, M. O. Delcourt, C. Houée-Lévin, and M. Mostafavi (2000). Ann Rep Sect C 96, 225–295.

    Article  CAS  Google Scholar 

  48. R. Dabestani and I. N. Ivanov (1999). Photochem Photobiol. 1, 10–34.

    Google Scholar 

  49. B. Pietrobon and V. Kitaev (2008). Chem. Mater. 16, 5186–5190.

    Article  Google Scholar 

  50. X. Zheng, X. Zhao, D. Guo, B. Tang, X. Shuping, B. Zhao, X. Weiqing, and J. R. Lombardi (2009). Langmuir. 6, 3802–3807.

    Article  Google Scholar 

  51. E. J. Guidelli, A. P. Ramos, and O. Baffa (2016). Sens. Actuators B 224, 248–255.

    Article  CAS  Google Scholar 

  52. B. S. Khade, V. L. Mathe, and P. M. Dongre (2017). J. Luminescence 187, 449–456.

    Article  CAS  Google Scholar 

  53. A. Polywka, C. Tückmantel, and P. Görrn (2017). Sci. Rep. 1, 1–7.

    Google Scholar 

  54. S. Sarina, E. R. Waclawik, and H. Zhu (2013). Green Chem. 7, 1814–1833.

    Article  Google Scholar 

  55. F. Bir, H. Khireddine, A. Touati, D. Sidane, S. Yala, and H. Oudadesse (2012). Appl. Surf. Sci. 18, 7021–7030.

    Article  Google Scholar 

  56. S. R. Brankovic, J. X. Wang, and R. R. Adžić (2001). Surf. Sci. 1–3, 173–179.

    Article  Google Scholar 

  57. Y. Huang, Y. Yan, and X. Pang (2013). Ceram. Int. 1, 245–253.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of Mumbai, SAIF Laboratory for TEM analysis, IIT Bombay, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipin S. Khade.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khade, B.S., Gawali, P., Ali, M. et al. Influence of Photon and Electrical Energy in the Nucleation of Silver Nanoparticles Synthesis. J Clust Sci 34, 189–197 (2023). https://doi.org/10.1007/s10876-021-02207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02207-0

Keywords

Navigation