Skip to main content
Log in

ZnFe2O4 and CuFe2O4 Nanocrystals: Synthesis, Characterization, and Bactericidal Application

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An easy mechanochemical and eco-friendly method was employed to obtain nanocrystals with an average size of about 9 nm of zinc ferrite (ZnFe2O4) and copper ferrite (CuFe2O4). Their corresponding X-ray diffraction (XRD) patterns reveal a cubic crystal structure for ZnFe2O4, whereas in CuFe2O4 the tetragonal and cubic crystal phases coexist, the latter being the majority phase. The transmission electron microscopy (TEM) images of these nano ferrites corroborate the formation of nanocrystals with dimensions consistent with those obtained from the XRD patterns. Furthermore, their corresponding Raman spectra confirm the structure and composition of nano ferrites. In addition, both nano ferrites show an electron paramagnetic resonance (EPR) spectrum with a wide band with g ~ 2.0, characteristic of ferromagnetic oxides. Besides, the antibacterial effect of ZnFe2O4 and CuFe2O4 nanocrystals against two opportunistic pathogens, Staphylococcus epidermidis (ATCC 14,990) and Pseudomonas aeruginosa (ATCC 43,636), was tested. The minimum bactericidal concentration (MBC) results showed that ZnFe2O4 was more effective against S. epidermidis, while CuFe2O4 was for P. aeruginosa. On the other hand, when 27 mg/mL of nano ferrites were dispersed in the agar plates, the growth of S. epidermidis was 100% inhibited, whereas ZnFe2O4 and CuFe2O4 inhibited 67% and 78% of P. aeruginosa growth, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. K. Kefeni and B. B. Mamba (2020). Sustain Mater Technol. https://doi.org/10.1016/j.susmat.2019.e00140.

    Article  Google Scholar 

  2. M. L. Baynosa, A. H. Mady, V. Q. Nguyen, D. R. Kumar, M. S. Sayed, D. Tuma, and J. J. Shim (2020). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2019.11.018.

    Article  PubMed  Google Scholar 

  3. Y. Fu and X. Wang (2011). Ind Eng Chem Res. https://doi.org/10.1021/ie200162a.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Y. Zhang, Q. Shi, J. Schliesser, B. F. Woodfield, and Z. Nan (2014). Inorg Chem. https://doi.org/10.1021/ic501487c.

    Article  PubMed  PubMed Central  Google Scholar 

  5. J. Haetge, C. Suchomski, and T. Brezesinski (2010). Inorg Chem. https://doi.org/10.1021/ic102052r.

    Article  PubMed  Google Scholar 

  6. C. Yao, Q. Zeng, G. F. Goya, T. Torres, J. Liu, and H. J. Wu (2007). Phys Chem C. https://doi.org/10.1021/jp0732763.

    Article  Google Scholar 

  7. M. R. Anantharaman, S. Jagatheesan, K. A. Malini, S. Sindhu, A. Narayanasamy, C. N. Chinnasamy, J. P. Jacobs, S. Reijne, K. Seshan, R. H. H. Smits, H. H., Brongersma, J. Magn. Magn. (1998) https://doi.org/10.1016/S0304-8853(98)00171-1

  8. M. Gharibshahian, O. Mirzaee, and M. S. Nourbakhsh (2017). J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2016.10.116.

    Article  Google Scholar 

  9. F. Liu, X. Li, Q. Zhao, Y. Hou, X. Quan, and G. Chen (2009). Acta Mater. https://doi.org/10.1016/j.actamat.2009.02.022.

    Article  Google Scholar 

  10. Z. H. Yuan and L. D. Zhang (1998). Mater Res Bull. https://doi.org/10.1016/j.actamat.2009.02.022.

    Article  Google Scholar 

  11. C. Nordhei, K. Mathisen, I. Bezverkhyy, and D. Nicholson (2008). J Phys Chem C. https://doi.org/10.1021/jp7112158.

    Article  Google Scholar 

  12. M. Sivakumar, T. Takami, H. Ikuta, A. Towata, K. Yasui, T. Tuziuti, T. Kozuka, D. Bhattacharya, and Y. Iida (2006). J Phys Chem B. https://doi.org/10.1021/jp055024c.

    Article  PubMed  Google Scholar 

  13. S. H. Yu, T. Fujino, and M. Yoshimura (2003). J Magn Magn Mater. https://doi.org/10.1016/S0304-8853(02)00977-0.

    Article  Google Scholar 

  14. N. Wakiya, K. Muraoka, T. Kadowaki, T. Kiguchi, N. Mizutani, H. Suzuki, and K. Shinozaki (2007). J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2006.11.145.

    Article  Google Scholar 

  15. R. Zhang, J. Huang, J. Zhao, Z. Sun, and Y. Wang (2007). Energy Fuels. https://doi.org/10.1021/ef070064w.

    Article  Google Scholar 

  16. A. R. Vazquez-Olmos, M. Abatal, R. Sato-Berru, G. K. Pedraza-Basulto, V. Garcia-Vazquez, A. Sainz-Vidal, R. Perez-Bañuelos, and A. Quiroz (2016). J Nanomater. https://doi.org/10.1155/2016/9182024.

    Article  Google Scholar 

  17. M. Balasubramanian and K. R. Murali (2020). Ferroelectrics. https://doi.org/10.1080/00150193.2019.1691381.

    Article  Google Scholar 

  18. E. Manova, T. Tsoncheva, D. Paneva, M. Popova, N. Velinov, B. Kunev, K. Tenchev, and I. Mitov (2011). J Solid State Chem. https://doi.org/10.1016/j.jssc.2011.03.035.

    Article  Google Scholar 

  19. N. Masunga, O.K. Mmelesi, K.K., Kefeni, B.B. Mamba, J. of Environ. Chem. Eng. (2019) https://doi.org/10.1016/j.jece.2019.103179

  20. A.T. Dhiwahar, M. Sundararajan, P. Sakthivel, C.S. Dash, S. Yuvaraj, J. of Physics and Chemistry of Solids (2020) https://doi.org/10.1016/j.jpcs.2019.109257

  21. V. N. Nikolić, M. Vasić, and M. M. Milić (2018). Ceramics Int. https://doi.org/10.1016/j.ceramint.2018.08.157.

    Article  Google Scholar 

  22. A. Subha, M.G. Shalini, B. Sahu, S.C. Sahoo, J. of Materials Science: Materials in electronics (2018) https://doi.org/10.1007/s10854-018-0221-8

  23. Z. Ye, Z. Deng, L. Zhang, J. Chen, G. Wang, and Z. Wu (2020). Mater Res Express. https://doi.org/10.1088/2053-1591/ab778b.

    Article  Google Scholar 

  24. V. A. Zhuravlev, R. V. Minin, V. I. Itin, and I. Y. Lilenko (2017). J of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2016.09.069.

    Article  Google Scholar 

  25. W. Lv, B. Liu, Z. Luo, X. Ren, and P. Zhang (2008). J of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2007.10.049.

    Article  Google Scholar 

  26. K. Muthukumar, D. S. Lakshmi, S. D. Acharya, S. Natarajan, A. Mukherjee, and H. C. Bajaj (2018). Mater Chem and Phys. https://doi.org/10.1016/j.matchemphys.2018.02.004.

    Article  Google Scholar 

  27. P. Chand (2008). Hyperfine Interact. https://doi.org/10.1007/s10751-008-9789-3.

    Article  Google Scholar 

  28. M.A. Ansari, A. Baykal, S. Asiri, S. Rehman, J. of Inorganic and Organometallic Polymers and Materials (2018) https://doi.org/10.1007/s10904-018-0889-5

  29. S. J. Stewart, M. J. Tueros, G. Cernicchiaro, and R. B. Scorzelli (2004). Solid State Communications. https://doi.org/10.1016/j.ssc.2003.11.010.

    Article  Google Scholar 

  30. M. M. Rashad, S. Soltan, A. A. Ramadan, M. F. Bekheet, and D. A. Rayan (2015). Ceramics Int. https://doi.org/10.1016/j.ceramint.2015.06.046.

    Article  Google Scholar 

  31. T. F. Marinca, I. Chicinas, and O. Isnard (2013). Ceramics Int. https://doi.org/10.1016/j.ceramint.2012.10.274.

    Article  Google Scholar 

  32. G. F. Goya and H. R. Rechenberg (1998). J of Appl Phys. https://doi.org/10.1063/1.368109.

    Article  Google Scholar 

  33. K. K. Kefeni, T. A. M. Msagati, T. T. Nkambule, and B. B. Mamba (2020). Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110314.

    Article  Google Scholar 

  34. M. M. Rashad, R. M. Mohamed, M. A. Ibrahim, L. F. M. Ismail, and E. A. Abdel-Aal (2012). Adv Powder Technol. https://doi.org/10.1016/j.apt.2011.04.005.

    Article  Google Scholar 

  35. V. N. Nikolić, M. M. Vasić, and D. Kisić (2019). J of Solid State Chem. https://doi.org/10.1016/j.jssc.2019.04.007.

    Article  Google Scholar 

  36. I. Khan, K. Saeed, and I. Khan (2019). Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  Google Scholar 

  37. K. Kaviyarasu, C.M. Magdalane, D. Jayakumar, Y. Samson, A.K.H. Bashir, M. Maaza, D. Letsholathebe, A. Hossam Mahmoud, J. Kennedy, Journal of King Saud University – Science (2020) https://doi.org/10.1016/j.jksus.2019.12.006.

  38. G. Kaupp (2009). Cryst Eng Comm. https://doi.org/10.1039/B810822F.

    Article  Google Scholar 

  39. J. L. Do, T. Friščić, and A. C. S. Cent (2017). Sci. https://doi.org/10.1021/acscentsci.6b00277.

    Article  Google Scholar 

  40. A.R. Vázquez-Olmos, M.E. Sánchez-Vergara, A.L. Fernández-Osorio, A. Hernández-García, R.Y. Sato-Berrú, J.R. Alvarez-Bada, J. Clust. Sci. (2018)

  41. K. Becker, C. Heilmann, and G. Peters (2014). Clin Microbiol Rev. https://doi.org/10.1128/CMR.00109-13.

    Article  PubMed  PubMed Central  Google Scholar 

  42. D. Chessa, G. Ganau, and M. Mazzarello (2015). J Infect Dev Ctries. https://doi.org/10.3855/jidc.6923.

    Article  PubMed  Google Scholar 

  43. M. Moradali, S. Ghods, and B. H. A. Rehm (2017). Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2017.00039.

    Article  PubMed  PubMed Central  Google Scholar 

  44. L. B. Zakiyah, E. Saion, N. M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, and S. Gene (2015). Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2015.07.027.

    Article  Google Scholar 

  45. L. Wang, C. Hu, and L. Shao (2017). Int J Nanomedicine. https://doi.org/10.2147/IJN.S121956.

    Article  PubMed  PubMed Central  Google Scholar 

  46. J. P. Singh, R. C. Srivastava, H. M. Agrawat, and R. Kumar (2010). J of Raman Spectrosc. https://doi.org/10.1002/jrs.2902.

    Article  Google Scholar 

  47. Z. Wanga, D. Schiferla, Y. Zhao, H.St.C. O’Neill, J. Phys. Chem. Solids. (2003) https://doi.org/10.1016/j.jpcs.2003.08.005

  48. M. Bibhas, K. Mousumi, M. Siba, S. Rajat, R. Ujjal Kanti, R. Anirban, D. Dipankar, ACS Omega (2019) https://doi.org/10.1021/acsomega.9b01477.

  49. K. K. Chattopadhyay, B. K. Chatterjee, K. Bhattacharyya, A. Dey, and C. K. Ghosh (2014). Dalton Trans. https://doi.org/10.1039/C4DT00093E.

    Article  PubMed  Google Scholar 

  50. N. Pathak, S. K. Gupta, K. Sanyal, M. Kumar, R. M. Kadam, and V. Natarajan (2014). Dalton Trans. https://doi.org/10.1039/C4DT00741G.

    Article  PubMed  Google Scholar 

  51. M. I. Nemufulwi, H. C. Swart, W. B. Mdlalose, and G. H. Mhlongo (2020). Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144863.

    Article  Google Scholar 

  52. X. Tang, A. Manthiram, and J. B. Goodenough (1989). J of Solid State Chem. https://doi.org/10.1016/0022-4596(89)90272-7.

    Article  Google Scholar 

  53. F. Gunkel, D. V. Christensen, Y. Z. Chen, and N. Pryds (2020). Appl Phys Lett. https://doi.org/10.1063/1.5143309.

    Article  Google Scholar 

  54. M.A. Ansari, A. Baykal, S. Asiri, S. Rehman, J. of Inorganic and Organometallic Polymers and Materials (2018) https://doi.org/10.1007/s10904-018-0889-5.

Download references

Acknowledgements

América Vázquez-Olmos gratefully acknowledges the support for this research to the UNAM-PAPIIT IN108616 grant. Argelia Almaguer-Flores acknowledges the support of the UNAM-PAPIIT # IT200319 grant. Blanca Paz-Díaz gratefully thanks CONACyT for the doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to América R. Vázquez-Olmos.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paz-Díaz, B., Vázquez-Olmos, A.R., Almaguer-Flores, A. et al. ZnFe2O4 and CuFe2O4 Nanocrystals: Synthesis, Characterization, and Bactericidal Application. J Clust Sci 34, 111–119 (2023). https://doi.org/10.1007/s10876-021-02203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02203-4

Keywords

Navigation