Skip to main content
Log in

Syntheses, Crystal Structures and NBO Calculation of Two New Zn(II)/Co(II) Coordination Polymers

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new Zn(II)/Co(II) coordination polymers, [Zn1.5(pmda)(OH)(bipy)]2n·2nH2O (1) and [Co(pmda)(bib)]n (2) (H2pmda = 4,4′-[1,2-phenylenebis(methyleneoxy)]dibenzoic acid, bipy = 4,4′-bipyridine, bib = 1,4-bis(imidazol-1-yl)-butane), have been prepared under hydrothermal conditions. Their structure were determined by single-crystal X-ray diffraction analysis, and further characterized by elemental analysis, IR spectra TG, and powder X-ray diffraction analysis. Complexes 1 and 2 both exhibit two-dimensional network structures and the intermolecular hydrogen bonding, π-π stacking interactions extend them into 3D supramolecular architectures, which play an important role in stabilizing them. The solid-state luminescent property of 1 and 2 were characterized and the results revealed that they exhibit fascinating photoluminescence properties. In addition, the sensing property of only 1 has been examined briefly. The quantum-chemical calculations of complex 1 have been performed on ‘molecular fragments’ extracted from the crystal structure using the PBE0/LANL2DZ method built in Gaussian 16 Program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. G. Liu, F. Rouhani, X. M. Gao, et al. (2020). Catal. Sci. Technol. 10, 757–767.

    CAS  Google Scholar 

  2. Y. Pan, Q. J. Ding, H. J. Xu, et al. (2019). CrystEngComm. 21, 4578–4585.

    Article  CAS  Google Scholar 

  3. G. Z. Liu, L. Y. Xin, L. Y. Wang. (2011). CrystEngComm. 13, 3013–3020.

  4. M. Zhang, M. W. Chen, Y. F. Bi, et al. (2019). J. Mater. Chem. A. 7, 12893–12899.

    Article  CAS  Google Scholar 

  5. X. L. Wang, R. Zhang, X. Wang, et al. (2016). Inorg. Chem. 55, 6384–6393.

    Article  CAS  Google Scholar 

  6. X. M. Li, Y. R. Pan, B. Liu, et al. (2020). Chinese. J. Struct. Chem. 39, 955–959.

    CAS  Google Scholar 

  7. J. Wang, C. Y. Bao, S. L. Zhang. (2021). CrystEngComm. 23, 741–747.

  8. J. Q. Liu, Z. D. Luo, Y. Pan, et al. (2020). Coord. Chem. Rev. 406, 213415.

  9. X. M. Tian, S. L. Yao, C. Q. Qiu, et al. (2020). Inorg. Chem. 59, 2803–2810.

    Article  CAS  Google Scholar 

  10. A. Dutta, A. Singh, X. X. Wang, et al. (2020). CrystEngComm. 22, 7736–7781.

    Article  CAS  Google Scholar 

  11. H. Y. Sun, X. Li, Z. R. Wang, et al. (2018). J. Cluster Sci. 29, 1275–1283.

    Article  CAS  Google Scholar 

  12. Y. P. Wu, J. W. Tian, S. Liu, et al. (2019). Angew. Chem. Int. Ed. 58, 12185–12189.

    Article  CAS  Google Scholar 

  13. K. Kasai, M. Aoyagi, and M. Fujita (2000). J. Am. Chem. Soc. 122, 2140–2141.

    Article  CAS  Google Scholar 

  14. A. Kirchon, L. Feng, H. F. Drake, et al. (2018). Chem. Soc. Rev. 47, 8611–8638.

    Article  CAS  Google Scholar 

  15. B. Wang, X. L. Lv, D. W. Feng, et al. (2016). J. Am. Chem. Soc. 138, 6204–6216.

    Article  CAS  Google Scholar 

  16. X. M. Li, J. Q. Yang, Y. R. Pan, et al. (2020). Chin. J. Inorg. Chem. 36, 730–736.

    CAS  Google Scholar 

  17. X. J. Li, A. Liu, X. D. Du, et al. (2019). Transit. Metal Chem. 44, 311–319.

    Article  CAS  Google Scholar 

  18. G. M. Sheldrick, SHELXS-2018, Programs for X-ray Crystal Structure Solution (University of Göttingen, Göttingen, Germany, 2018).

    Google Scholar 

  19. G. M. Sheldrick, SHELXL-2018, Programs for X-ray Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 2018).

    Google Scholar 

  20. J. Wang, Y. Pan, L. Lu. (2019). J. Mole. Struc. 1196, 194–200.

  21. M. Devereux, D. O. Shea, A. Kellett, et al. (2007). Inorg. Biochem. 101, 881–892.

    Article  CAS  Google Scholar 

  22. S. Ruchi and K. P. Bharadwaj (2013). Cryst. Growth Des. 13, 3722–3733.

    Article  Google Scholar 

  23. X. Bing, J. Xie, H. M. Hu, et al. (2014). Cryst. Growth Des. 14, 1629–1641.

    Article  Google Scholar 

  24. X. D. Guo, G. S. Zhu, Q. R. Fang, et al. (2005). Inorg. Chem. 44, 3850–3855.

    Article  CAS  Google Scholar 

  25. J. Tao, M. L. Tong, J. X. Shi, et al. (2000). Chem. Commun. 20, 2043–2044.

    Article  Google Scholar 

  26. L. L. Wen, Z. D. Lu, J. G. Lin, et al. (2007). Cryst. Growth Des. 7, 93–99.

    Article  CAS  Google Scholar 

  27. J. G. Lin, S. Q. Zang, Z. F. Tian, et al. (2007). CrystEngComm. 9, 915–921.

    Article  CAS  Google Scholar 

  28. G. G. Mohamed and N. E. A. El-Gamel (2004). Spectrochim. Acta, Part A 60, 3141–3154.

    Article  Google Scholar 

  29. G. L. Li, G. Z. Liu, L. L. Huang, et al. (2014). J Inorg Organomet Polym. 24, 617–623.

    Article  CAS  Google Scholar 

  30. A. Rodriguez-Dieguez, A. Salinas-Castillo, A. Sironi, et al. (2010). CrystEng- Comm. 12, 1876–1879.

    Article  Google Scholar 

  31. H. Y. Bai, J. F. Ma, J. Yang, et al. (2010). Cryst. Growth Des. 10, 1946–1959.

    Article  CAS  Google Scholar 

  32. M. Ernzerhof and G. E. Scuseria (1999). J. Chem. Phys. 110, 5029–5036.

    Article  CAS  Google Scholar 

  33. C. Adamo and V. J. Barone (1999). J. Chem. Phys. 110, 6158–6170.

    Article  CAS  Google Scholar 

  34. T. H. Dunning and P. J. Hay Jr., in H. F. Schaefer (ed.), Modern Theoretical Chemistry (Plenum, New York, 1976), p. 1.

    Google Scholar 

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel. et al. (2016). Gaussian 16(Gaussian Inc., Wallingford)

Download references

Acknowledgments

This work was supported by the Science and Technology Development Project of Jilin Provincial Science & Technology Department (2015052006JH) and the Science and Technology Research Projects of the Education Department of Jilin Province (2016219). Program supports from State Key Laboratory of Theoretical and Computational Chemistry of Tonghua Normal University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Valtchev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All the ethical guidelines have been adhered.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

. IR spectra of complex 1 (TIF 126 kb)

Fig. S2

. IR spectra of complex 2 (TIF 113 kb)

Fig. S3

. TG curves of complexes 1 and 2 (TIF 229 kb)

Fig. S4

. PXRD patterns of complexes 1 and 2 at room temperature. The red line is simulated and the black line is experimental (TIF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XM., Wang, ZT., Valtchev, V. et al. Syntheses, Crystal Structures and NBO Calculation of Two New Zn(II)/Co(II) Coordination Polymers. J Clust Sci 33, 1083–1091 (2022). https://doi.org/10.1007/s10876-021-02042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02042-3

Keywords

Navigation