Skip to main content
Log in

The Degradation Rate Study of Methyl Orange Using MWCNTs@TiO2 as Photocatalyst, Application of Statistical Analysis Based on Fisher’s F Distribution

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study the synthesized photocatalysts such as TiO2 nanoparticles and MWCNTs@TiO2 are applied for elimination of methyl orange (MO). The results confirm that the MO concentration is reduced by enhancement of irradiation time and weight fraction of photocatalysts. However, the degradation rate of MO using MWCNTs@TiO2 is higher than that of TiO2 nanoparticles. Statistical analysis of the degradation rate reveals that the influence of irradiation time is more that weight fraction. Meanwhile, the results of ANOVA depict that both of irradiation time and weight fraction have a reasonable effect on the degradation rate of MO. The hypothesis test confirms that the variation of the MO concentration can be successfully predicted using statistical models that contain all of the significant main factors and their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Ahmad, E. Ahmed, Z. L. Hong, W. Ahmed, A. Elhissi, and N. R. Khalid (2014). Ultrason. Sonochem. 21, 761.

    Article  CAS  Google Scholar 

  2. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, and P. Kumar (2018). J. Nanobiotechnol. 16, 84.

    Article  CAS  Google Scholar 

  3. H. Kaur, S. Kaur, S. Kumar, J. Singh, and M. Rawat (2020). J. Clust. Sci.

  4. S. Abbasi and M. Hasanpour (2017). J. Mater. Sci. 28, 1307.

    CAS  Google Scholar 

  5. M. Saquib and M. Muneer (2003). Desalination 155, 255.

    Article  CAS  Google Scholar 

  6. G. Kaur, H. Kaur, S. Kumar, V. Verma, H. S. Jhinjer, J. Singh, M. Rawat, P. P. Singh, and S. Al-Rashed (2020). J. Inorg. Organomet. Polym. Mater.

  7. H. Kaur, V. Goyal, J. Singh, S. Kumar, and M. Rawat (2019). Micro. Nano Lett. 14, 1229.

    CAS  Google Scholar 

  8. S. Abbasi and a. M.-S. Ekrami-Kakhki, and M. Tahari (2019). Progr. Ind. Ecol. 13, 3.

    Article  Google Scholar 

  9. H. Kaur, S. Kaur, J. Singh, M. Rawat, and S. Kumar (2019). Mater. Res. Express 6, 095034.

    Article  CAS  Google Scholar 

  10. M. Ahmad, Z. L. Hong, E. Ahmed, N. R. Khalid, A. Elhissi, and W. Ahmad (2013). Ceram. Int. 39, 3007.

    Article  CAS  Google Scholar 

  11. A. Ghaderi, S. Abbasi, and F. Farahbod (2015). IJCCE 12, 96.

    Google Scholar 

  12. S. Abbasi (2016). IJHE 9, 433.

    Google Scholar 

  13. S. Abbasi (2018). Mater. Res. Express 5, 066302.

    Article  Google Scholar 

  14. M. Singh, J. Singh, M. Rawat, J. Sharma, and P. P. Singh (2019). J. Mater. Sci. 30, 13389.

    CAS  Google Scholar 

  15. S. Abbasi (2019). J. Inorg. Organomet. Polym. Mater.

  16. K. Li, Y. Guo, F. Ma, H. Li, L. Chen, and Y. Guo (2010). Catal. Commun. 11, 839.

    Article  CAS  Google Scholar 

  17. S. Abbasi, F. Ahmadpoor, M. Imani, and M.-S. Ekrami-Kakhki (2019). Int. J. Environ. Anal. Chem. 100, 225.

    Article  Google Scholar 

  18. S. Abbasi and M. Hasanpour (2017). J. Mater. Sci. 28, 11846.

    CAS  Google Scholar 

  19. N. Roozban, S. Abbasi, and M. Ghazizadeh (2017). J. Mater. Sci. 28, 6047.

    CAS  Google Scholar 

  20. N. Roozban, S. Abbasi, and M. Ghazizadeh (2017). J. Mater. Sci. 28, 7343.

    CAS  Google Scholar 

  21. S. Abbasi, S. M. Zebarjad, and S. H. N. Baghban (2013). Engineering 5, 207.

    Article  Google Scholar 

  22. S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, and A. Youssefi (2015). Synth. React. Inorg. M 45, 1539.

    Article  CAS  Google Scholar 

  23. S. Abbasi, M. Hasanpour, and M. S. E. Kakhki (2017). J. Mater. Sci. 28, 9900.

    CAS  Google Scholar 

  24. J. G. Yu, T. T. Ma, and S. W. Liu (2011). Phys. Chem. Chem. Phys. 13, 3491.

    Article  CAS  Google Scholar 

  25. A. Singh, V. Goyal, J. Singh, and M. Rawat (2020). Curr. Res. Green Sustain. Chem..

    Google Scholar 

  26. S. Abbasi, M. Hasanpour, F. Ahmadpoor, M. Sillanpää, D. Dastan, and A. Achour (2019). Int J. Environ. Anal. Chem..

    Google Scholar 

  27. S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, and A. Youssefi (2014). Bull. Mater. Sci. 37, 1439.

    Article  CAS  Google Scholar 

  28. S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, A. Youssefi, and M.-S. Ekrami-Kakhki (2016). J. Therm. Anal. Calorim. 123, 81.

    Article  CAS  Google Scholar 

  29. A. Ahmad, M. I. Ahmad, M. Younas, H. Khan, and M. u. H. Shah (2013). Iran. J. Chem. Chem. Eng. 32, 33.

    CAS  Google Scholar 

  30. M. Namvar-Mahboub and M. Pakizeh (2014). Korean J. Chem. Eng. 31, 327.

    Article  CAS  Google Scholar 

  31. A. Ghaderi, S. Abbasi, and F. Farahbod (2018). Mater. Res. Express 5, 065908.

    Article  Google Scholar 

  32. J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera (2003). Nano Lett. 3, 1107.

    Article  CAS  Google Scholar 

  33. K. Byrappa, A. S. Dayananda, C. P. Sajan, B. Basavalingu, M. B. Shayan, K. Soga, and M. Yoshimura (2008). J. Mater. Sci. 43, 2348.

    Article  CAS  Google Scholar 

  34. S. Abbasi (2018). IJHE 5, 113.

    Article  Google Scholar 

  35. S. Abbasi (2019). Environ. Monit. Assess. 191, 206.

    Article  Google Scholar 

  36. S. Abbasi, M.-S. Ekrami-Kakhki, and M. Tahari (2017). J. Mater. Sci. 28, 15306.

    CAS  Google Scholar 

  37. A. H. Navidpour, M. Fakhrzad, M. Tahari, and S. Abbasi (2019). Surf. Eng. 35, 216.

    Article  CAS  Google Scholar 

  38. G. Zhu, H. Wang, G. Yang, L. Chen, P. Guo, and L. Zhang (2015). RSC Adv. 5, 72476.

    Article  CAS  Google Scholar 

  39. M. Fakhrzad, A. H. Navidpour, M. Tahari, and S. Abbasi (2019). Mater. Res. Express 6, 095037.

    Article  CAS  Google Scholar 

  40. M.-S. Ekrami-Kakhki, S. Abbasi, and N. Farzaneh (2018). Anal. Bioanal. Electrochem. 10, 1548.

    CAS  Google Scholar 

  41. M.-S. Ekrami-Kakhki, S. Abbasi, and N. Farzaneh (2018). Electron. Mater. Lett. 14, 70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this article express their special thanks and appreciation to the Esfarayen University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedigheh Abbasi.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organisation that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, S. The Degradation Rate Study of Methyl Orange Using MWCNTs@TiO2 as Photocatalyst, Application of Statistical Analysis Based on Fisher’s F Distribution. J Clust Sci 33, 593–602 (2022). https://doi.org/10.1007/s10876-021-01991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-01991-z

Keywords

Navigation