Skip to main content

Advertisement

Log in

Efficient and Stable Co3O4/ZnO Nanocomposite for Photochemical Water Splitting

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, an efficient Co3O4/ZnO based composite was prepared by the low temperature aqueous chemical growth method for photoelectrochemical water splitting. Both ZnO and Co3O4 constituents are identified in the composite sample through X-ray diffraction technique. Scanning electron microscopy has shown the nanorod like morphology of ZnO with etched top surface. The energy dispersive spectroscopy has shown the presence of cobalt, oxygen and zinc as the main elements in the composite samples. The Co3O4/ZnO composite (with low content of cobalt chloride hexahydrate) shows a significant increase in the photocurrent density (3 mA/cm2 at 0.5 V vs Ag/AgCl, which is 10 times higher than the pristine ZnO). Importantly, a fast and stable photocurrent response is found at an illumination of 1 Sun of light. The superior performance of the Co3O4/ZnO composite system is attributed to the facile promotion of electron–hole charge carrier separation and favourable charge transport. Furthermore, the electrochemical impedance spectroscopy showed a small charge transfer resistance of 259.30 Ohms for the composite material and consequently a robust water splitting is obtained. The prepared composite is earth abundant, inexpensive and scalable, therefore it can be used for diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Fujishima and K. Honda (1972). Nature 238, 37–38.

    Article  CAS  PubMed  Google Scholar 

  2. C. Du, X. Yang, M. T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping, and D. Wang (2013). Angew. Chem. Int. Ed. 52, 12692–12695.

    Article  CAS  Google Scholar 

  3. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang (2014). Adv. Mater. 26, 2137–2184.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan (2003). Adv. Mater. 15, 353–389.

    Article  CAS  Google Scholar 

  5. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li (2010). Nano Lett. 10, 1088–1092.

    Article  CAS  PubMed  Google Scholar 

  6. X. Zhang, et al. (2014). Sci. Rep. 4, 4596.

    Article  PubMed  PubMed Central  Google Scholar 

  7. R. Schölin, M. Quintana, E. M. J. Johansson, M. Hahlin, T. Marinado, A. Hagfeld, and H. Rensmo (2011). J. Phys. Chem. C 115, 19274–19279.

    Article  Google Scholar 

  8. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang (2003). Angew. Chem. Int. Ed. 42, 3031–3034.

    Article  CAS  Google Scholar 

  9. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu (2003). Nat. Mater. 2, 821–826.

    Article  CAS  PubMed  Google Scholar 

  10. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu (2003). Appl. Phys. Lett. 83, 1689–1691.

    Article  CAS  Google Scholar 

  11. J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi (2004). Adv. Mater. 16, 1661–1664.

    Article  CAS  Google Scholar 

  12. L.-W. Sun, H.-Q. Shi, W.-N. Li, H.-M. Xiao, S.-Y. Fu, X.-Z. Cao, and Z.-X. Li (2012). J. Mater. Chem. 22, 8221–8227.

    Article  CAS  Google Scholar 

  13. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li (2009). Nano Lett. 9, 2331–2336.

    Article  CAS  PubMed  Google Scholar 

  14. M. Shao, F. Ning, M. Wei, D. G. Evans, and X. Duan (2014). Adv. Funct. Mater. 24, 580–586.

    Article  CAS  Google Scholar 

  15. A. Kudo and Y. Miseki (2009). Chem. Soc. Rev. 38, 253–278.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, and Y. Lin (2012). J. Phys. Chem. C 116, 8888–8893.

    Article  CAS  Google Scholar 

  17. J. S. Graciani, A. Nambu, J. Evans, J. A. Rodriguez, and J. F. Sanz (2008). J. Am. Chem. Soc. 130, 12056–12063.

    Article  CAS  PubMed  Google Scholar 

  18. N. Kouklin (2008). Adv. Mater. 20, 2190–2194.

    Article  CAS  Google Scholar 

  19. J. Zhang and W. Que (2010). Sol. Energy Mater. Sol. Cells 94, 2181–2186.

    Article  CAS  Google Scholar 

  20. S. Phadke, J. Y. Lee, J. West, P. Peumans, and A. Salleo (2011). Adv. Funct. Mater. 21, 4691–4697.

    Article  CAS  Google Scholar 

  21. P. Chen, L. Chen, S. Ge, W. Zhang, M. Wu, P. Xing, T. B. Rotamond, H. Lin, Y. Wu, and Y. He (2020). Int. J. Hydrog. Energy 45, 14354–14367.

    Article  CAS  Google Scholar 

  22. Y. Chen, C. Zhao, S. Ma, P. Xing, X. Hu, Y. Wu, and Y. He (2019). Inorg. Chem. Front. 6, 3083–3092.

    Article  CAS  Google Scholar 

  23. P. Xing, S. Wu, Y. Chen, P. Chen, X. Hu, H. Lin, L. Zhao, and L. Zhao (2019). ACS Sustain. Chem. Eng. 7, 12408–12418.

    CAS  Google Scholar 

  24. P. Xing, P. Chen, Z. Chen, X. Hu, H. Lin, Y. Wu, L. Zhao, and Y. He (2018). ACS Sustain. Chem. Eng. 6, 14866–14879.

    Article  CAS  Google Scholar 

  25. F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, and R. V. D. Krol (2013). Nat. Commun. 4, 2195.

    Article  PubMed  Google Scholar 

  26. Y. L. Lee, C. F. Chi, and S. Y. Liau (2010). Chem. Mater. 22, 922–927.

    Article  CAS  Google Scholar 

  27. H. Li, C. Cheng, X. Li, J. Liu, C. Guan, Y. Y. Tay, and H. J. Fan (2012). J. Phys. Chem. C 116, 3802–3807.

    Article  CAS  Google Scholar 

  28. W. Yu, J. Zhang, and T. Peng (2016). Appl. Catal. B 181, 220–227.

    Article  CAS  Google Scholar 

  29. V. Etacheri, R. Roshan, and V. Kumar (2012). ACS Appl. Mater. Interfaces 4, 2717–2725.

    Article  CAS  PubMed  Google Scholar 

  30. H. Zhang, J. Sun, V. L. Dagle, B. Halevi, A. K. Datye, and Y. Wang (2014). ACS Catal. 4, 2379–2386.

    Article  CAS  Google Scholar 

  31. W. He, H. K. Kim, W. G. Wamer, D. Melka, J. H. Callahan, and J. J. Yin (2014). J. Am. Chem. Soc. 2014 (136), 750–757.

    Article  Google Scholar 

  32. C. Eley, T. Li, F. Liao, S. M. Fairclough, J. M. Smith, G. Smith, and S. C. Tsang (2014). Angew. Chem. Int. Ed. 53, 7838–7842.

    Article  CAS  Google Scholar 

  33. T. I. Lee, S. H. Lee, Y. D. Kim, W. S. Jang, J. Y. Oh, H. K. Baik, C. Stampfl, A. Soon, and J. M. Myoung (2012). Nano Lett. 12, 68–76.

    Article  CAS  PubMed  Google Scholar 

  34. S. Shena, C. X. Kronawitter, J. Jiang, P. Guo, L. Guo, and S. S. Mao (2013). Nano Energy 2, 958–965.

    Article  Google Scholar 

  35. L. Chen, R. Chen, H. Hu, and G. Li (2019). Mater. Lett. 242, 47–50.

    Article  CAS  Google Scholar 

  36. N. A. M. Barakat, E. Ahmed, M. T. Amen, M. A. Abdelkareem, and A. A. Farghali (2018). Mater. Lett. 210, 317–320.

    Article  CAS  Google Scholar 

  37. Y. Yang, W. Cheng, and Y. F. Cheng (2019). Appl. Surf. Sci. 476, 815–821.

    Article  CAS  Google Scholar 

  38. M. Liao, J. Feng, W. Luo, Z. Wang, J. Zhang, Z. Li, T. Yu, and Z. Zou (2012). Adv. Funct. Mater. 22, 3066–3074.

    Article  CAS  Google Scholar 

  39. G. Dong, H. Hu, X. Huang, Y. Zhang, and Y. Bi (2018). J. Mater. Chem. A 6, 21003.

    Article  CAS  Google Scholar 

  40. A. C. Pradhan, T. Uyar, and A. C. S. Appl (2017). Mater. Interfaces 9, 35757–35774.

    Article  CAS  Google Scholar 

  41. C. Ma, D. Wang, W. Xue, B. Dou, H. Wang, and Z. Hao (2011). Environ. Sci. Technol. 45, 3628–3634.

    Article  CAS  PubMed  Google Scholar 

  42. H. Yang, Z. Jin, D. Liu, K. Fan, and G. Wang (2018). J. Phys. Chem. C 122, 10430–10441.

    Article  CAS  Google Scholar 

  43. R. Tang, S. Zhou, Z. Yuan, and L. Yin (2017). Adv. Funct. Mater. 27, 1701102.

    Article  Google Scholar 

  44. D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, and A. C. S. Appl (2014). Mater. Interfaces 6, 15905–15912.

    Article  CAS  Google Scholar 

  45. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, and J. Gong (2015). J. Am. Chem. Soc. 137, 8356–8359.

    Article  CAS  PubMed  Google Scholar 

  46. H. Liu, C. Hu, H. Zhai, et al. (2017). RSC Adv. 7, 37220–37229.

    Article  CAS  Google Scholar 

  47. C. Hao, W. Wang, R. Zhang, et al. (2018). Sol. Energy. Mater. Sol. Cells. 174, 132–139.

    Article  CAS  Google Scholar 

  48. K. W. Satish, C. Rai, Y. Ding, J. K. Hou, and Z. L. Wang (2015). ACS Nano 9, 8.

    Google Scholar 

  49. X. Liu, Q. Liu, P. Wang, Y. Liu, B. Huang, E. A. Rozhkova, Q. Zhang, Z. Wang, Y. Dai, and J. Lu (2018). Chem. Eng. J. 337, 480–487.

    Article  CAS  Google Scholar 

  50. D. Hidalgo, R. Messina, A. Sacco, D. M. Sanfredi, S. Vankova, E. Garrone, G. Saracco, and S. Hernández (2014). Int. J. Hydrog. Energy 39, 21512–21522.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We extend our sincere appreciation to the Researchers Supporting Project number (RSP-2020/79) at King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar Hussain Ibupoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahira, A., Ibupoto, Z.H., Nafady, A. et al. Efficient and Stable Co3O4/ZnO Nanocomposite for Photochemical Water Splitting. J Clust Sci 33, 387–394 (2022). https://doi.org/10.1007/s10876-021-01980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-01980-2

Keywords

Navigation